
Towards Open Natural Language Feedback Generation for
Novice Programmers using Large Language Models

Charles Koutcheme, charles.koutcheme@aalto.fi
Aalto University

1. def mean(arr):
2. if len(arr) == 0:
3. return "None"
4. sum = 0
5. for i in range(0, len(arr)-1):
6. sum = sum + arr[i]
7. avg = sum // len(arr)
8. return avg

Envisions a working solution
Describes the incorrect parts

Program
repair

1. def mean(arr):
2. if len(arr) == 0:
3. return "None"
4. sum = 0
5. for i in range(0, len(arr)-1):
6. sum = sum + arr[i]
7. avg = sum // len(arr)
8. return avg

1. def mean(arr):
2. if len(arr) == 0:
3. return None
4. sum = 0
5. for i in range(0, len(arr)):
6. sum = sum + arr[i]
7. avg = sum / len(arr)
8. return avg

EMPTY LIST

SUMMATION

AVERAGING

Program
understanding

If the list is empty, returns the null value.

Line by line code explanation

1. def mean(arr):
2. if len(arr) == 0:
3. return "None"
4. sum = 0
5. for i in range(0, len(arr)-1):
6. sum = sum + arr[i]
7. avg = sum // len(arr)
8. return avg

1. def mean(arr):
2. if len(arr) == 0:
3. return "None"
4. sum = 0
5. for i in range(0, len(arr)-1):
6. sum = sum + arr[i]
7. avg = sum // len(arr)
8. return avg

EMPTY LIST

AVERAGING

SUMMATION
Sums all elements of the array.

Divides the sum by the length of the array.

If the list is empty, return "None".

Sum all elements of the array,
except the last one.

Computes the integer division of the sum
by the length of the array.

The message part of the feedback will be formatted by an analysis of the
differences between the code descriptions of the correct and incorrect solutions.

1. def mean(arr):
2. if len(arr) == 0:
3. return None
4. sum = 0
5. for i in range(0, len(arr)):
6. sum = sum + arr[i]
7. avg = sum / len(arr)
8. return avg

1. def mean(arr):
2. if len(arr) == 0:
3. return None
4. sum = 0
5. for i in range(0, len(arr)):
6. sum = sum + arr[i]
7. avg = sum / len(arr)
8. return avg

Recent generative models are capable of repairing code.

Context

This poster proposes an approach for automatically generating
programming feedback. The project idea builds on the intuition of a
teaching assistant (TA) helping a student who is stuck.

Teaching assistant

Path A.
Human feedback

Program repair

In case of an empty list,
the program does not return None.

When doing the summation, the program
does not loop up until the end of the array.

When computing the mean,
the program does not compute the full average.

On line 2, replace "None" by None

On line 5, remove the -1

On line 7, replace the integer division ("//")
operator with the division operator ("/")

From Program Understanding, we get the root of the problems From Program Repair, we get the action to perform to correct the code

Generating feedback

Large Language Models can also write line-by-line descriptions of
what is happening in students' code.

Line by line code explanation

The message

Message Hint

Approach understanding

Line by line code explanation

Approach understanding

By modelling code and natural language jointly, we could come back
with the approach taken by the student to solve the problem.

Approach understanding

We obtain the action to perform using
bug localisation (during programer repair).

The hint

Project Idea

When shown a student's program, the TA:

1) Envisions a working solution to the given problem that is close to the
student's code and the changes that need to happen to transform the
student's code into the pictured working solution.

2) Then, the TA comes up with a description of what is happening in the
current incorrect program and highlights what makes it incorrect.

The natural language description of what makes the code incorrect and the
required changes to arrive at the correct solution are the TA's feedback to
the student.

Our idea builds from the intuition that we can map this human thought
process to existing machine-learning approaches leveraging open large
language models (LLMs).

(2) If the length of the list is 0,

(3) the function returns the string "None".

(4) Initialises a summation variable.

(5) Loops through the array from the

 first element up until before the last one...

(6) ...and computes the sum of these elements.

(7) Divides the sum by the length of the array,

 and keeps the integer part.

(8) Returns the computed value.

(2) If the length of the list is 0,

(3) the function returns None.

(4) Initialises a summation variable.

(5) Loops through all elements of the array...

(6) ...and computes the sum of these elements.

(7) Divides the sum by the length of the array.

(8) Returns the computed value.

student's incorrect solution

Path B.
The proposed approach

Student

Write a function "mean", that takes as an argument a list of
numbers and computes the average of its elements.
If the list is empty, the function returns the null value.

Scan me

