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Abstract

Locally deployed Small Language Models
(SLMs) offer a promising solution for provid-
ing timely and effective programming feedback
to students learning to code. However, SLMs
often produce misleading or hallucinated feed-
back, limiting their reliability in educational
settings. Current approaches for improving
SLM feedback rely on existing human annota-
tions or LLM-generated feedback. This paper
addresses a fundamental challenge: Can we
improve SLMs’ feedback capabilities without
relying on human or LLM-generated annota-
tions? We demonstrate that training SLMs on
the proxy task of program repair is sufficient to
enhance their ability to generate high-quality
feedback. To this end, we introduce Direct Re-
pair Optimization (DRO), a self-supervised on-
line reinforcement learning strategy that trains
language models to reason about how to ef-
ficiently fix students’ programs. Our experi-
ments, using DRO to fine-tune LLaMA-3.1–3B
and Qwen-2.5–3B on a large-scale dataset of
Python submissions from real students, show
substantial improvements on downstream feed-
back tasks. We release our code to support
further research in educational feedback and
highlight promising directions for future work.

Code: § github.com/KoutchemeCharles/rlpf

1 Introduction

Learning to program remains challenging for many
students, despite advances in teaching methodolo-
gies (Luxton-Reilly et al., 2018; Vihavainen et al.,
2014). A key part of addressing these challenges
is providing timely and accurate feedback (Jeuring
et al., 2022), which is crucial for learning (Hattie
and Timperley, 2007). Large Language Models
(LLMs) such as GPT-4 have shown exceptional
success in that task (Lohr et al., 2025), leading to
their growing adoption in classrooms (Ahmed et al.,
2025; Wang et al., 2024; Vadaparty et al., 2024; Liu
et al., 2024a; Liffiton et al., 2024).

However, reliance on vendor-hosted LLMs
raises substantial privacy concerns and potential
ethical issues related to institutional control (Das
et al., 2025). The privacy issues, jointly with scal-
ability issues and associated costs, are driving a
growing shift towards leveraging smaller open-
source models (SLMs), which can be deployed
and run locally within educational institutions or
on students’ computers and browsers (Yu et al.,
2025b; Liu et al., 2024b).

However, smaller language models tend to pro-
duce misleading or hallucinated feedback, poten-
tially confusing learners and negatively impact-
ing learning (Koutcheme et al., 2025). Current
methods for enhancing SLMs typically rely on su-
pervised learning (Kotalwar et al., 2024)or rein-
forcement learning from either human annotations
(Woodrow et al., 2025) or synthetic data generated
by larger models (Ashok Kumar and Lan, 2024).
These strategies come with limitations: human an-
notations are difficult to scale and replicate, while
synthetic data inherits biases and capabilities from
general-purpose LLMs.

Addressing these limitations raises a broader
challenge for the field of programming education:
can we improve small language models’ abilities to
generate meaningful programming feedback with-
out relying on external LLMs or human annota-
tions? Exploring this question opens a promising
research direction focused on assessing how effec-
tively small models can perform when trained ex-
clusively on educational data. Understanding this
can yield insights into the inherent capabilities of
these models, free from external biases (DeepSeek-
AI, 2025). This question matters not just tech-
nically, but also pedagogically; training models
exclusively grounded in student work and learn-
ing contexts could facilitate more adaptable class-
room deployment, enhance institutional control
over model behaviour, and mitigate privacy con-
cerns (Das et al., 2025).

https://github.com/KoutchemeCharles/rlpf


Recent reinforcement learning techniques such
as Group Relative Preference Optimization
(GRPO) (Shao et al., 2024) have shown great
promise in improving language models’ reason-
ing capabilities, allowing relatively small models
to reach the performance of significantly larger
ones with minimal LLM supervision (DeepSeek-
AI, 2025). In parallel, prior work reveals a strong
correlation between language models’ abilities to
generate programming feedback and their capacity
for fixing students’ programs (Koutcheme et al.,
2024a): models proficient in program repair are
independently good at generating feedback.

Building on this insight, we hypothesise that
improving a small language model’s repair capa-
bilities through reasoning could be sufficient to
enhance the model’s feedback-generation abilities.
We argue that the reasoning needed for generating a
repair involves a thinking process useful to provide
students with feedback, much like how teaching
assistants reason about students’ mistakes before
giving advice (Koutcheme, 2022).

Our paper thus aims to answer the following
research question:

(RQ) How effective is training small language
models to reason about educational program
repair for improving their ability to generate
high-quality programming feedback, and how
does this technique compare to training mod-
els with LLM supervision?

To address this question, we introduce Direct
Repair Optimization (DRO). This reinforcement
learning training pipeline, based on Group Rela-
tive Preference Optimization, leverages historical
datasets of student submissions to fine-tune small
language models for program repair, using unit test
results and syntactic/semantic distance measures
as rewards to guide learning.

We apply DRO to fine-tune LLaMA-3.1-3B
(Dubey et al., 2024) and Qwen-2.5-3B (Hui et al.,
2024) on a large-scale dataset of student code from
introductory programming courses (de Freitas
et al., 2023). We evaluate the resulting model on
multiple feedback tasks — including bug explana-
tions, patch descriptions, and next-step hints — and
show consistent improvements over all feedback
criteria. Our contributions are as follows:

• We introduce a new LLM-free training
pipeline for feedback generation based on pro-
gram repair and reinforcement learning.

• We show that reasoning about program repair
transfers to various forms of feedback, includ-
ing explanations, fixes, and hints.

• We further demonstrate that reasoning about
program repair improves the performance of
LLM-distilled models.

• We release our code and data processing
pipeline to support future research in aligning
language models for educational feedback1.

2 Related work

2.1 Programming Feedback
Program repair. Program repair has long been a
cornerstone of AI-driven programming education,
serving as a foundation for generating actionable
feedback, such as next-step hints, through Intel-
ligent Tutoring Systems (Rivers and Koedinger,
2017). Before the rise of instruction-tuned and chat
language models, much of the work in this domain
focused on leveraging closed pre-trained models,
such as OpenAI Codex, to generate repairs through
zero- or few-shot prompting. These approaches
often relied on historical student submissions, auto-
mated unit tests, and other contextual information
to guide the repair generation process (Zhang et al.,
2022; Joshi et al., 2023).

In parallel, open-source language models were
also explored for program repair tasks. For ex-
ample, prior efforts have fine-tuned such mod-
els using datasets derived from student submis-
sions (Koutcheme et al., 2023b) and automated re-
pair tools (Koutcheme, 2023). These works demon-
strated the viability of repair-focused training but
did not directly explore its implications for improv-
ing natural language feedback.

Using program repair for improving feedback.
Even with the advent of chat models, several works
proposed leveraging the quality of repairs gener-
ated alongside feedback as a validation mechanism
to ensure only relevant suggestions reach learners
(Phung et al., 2024; Sahai et al., 2023). In paral-
lel, other studies propose generating a high-quality
candidate repair program as a reasoning step to
generate higher-quality feedback. (Phung et al.,
2023; Sahai et al., 2023). This strategy has been ex-
tended with success to distil LLM-generated repair-
induced feedback to small language models via
Supervised Fine-tuning (Kotalwar et al., 2024).

1
§ github.com/KoutchemeCharles/rlpf

https://github.com/KoutchemeCharles/rlpf


Reinforcement learning from human and AI
feedback. Supervised Fine-Tuning (SFT) meth-
ods are limited in their ability to align language
models with nuanced human objectives (Ouyang
et al., 2022). Several works have explored re-
inforcement learning techniques, such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2024), to train small language models to gener-
ate higher-quality feedback. For example, this
has been done by leveraging teaching assistants’
(TAs) edits of their responses to student forum
questions (Hicke et al., 2023), collecting live TA
preferences over several model-generated feed-
back (Woodrow et al., 2025), or combining existing
high-quality human annotations with AI-generated
alternatives (Ashok Kumar and Lan, 2024).

However, these methods typically rely on human
supervision or the existence of labeled human feed-
back. This reliance poses challenges in contexts
where such annotations are scarce or unavailable.
While full Reinforcement Learning with AI Feed-
back (RLAIF) (Lee et al., 2024) approaches have
been theorized to work well in the programming
domain (Scarlatos et al., 2024), in this paper, we
explore whether we can bootstrap feedback capa-
bilities in small language models without requiring
any human or LLM involvement.

2.2 Improving SLM Reasoning Without
LLMs

Recent work has proposed leveraging automatically
evaluable tasks to define preference pairs for DPO
optimization (Pang et al., 2024), replacing the need
for human or LLM judgments. In domains like
programming and math, where correctness can be
verified programmatically, this strategy has shown
promising results. Combined with large-scale sam-
pling and chain-of-thought prompting (Wei et al.,
2022), such methods have yielded substantial im-
provements with minimal supervision (Pang et al.,
2024).

Most recently, a new line of alignment tech-
niques (Shao et al., 2024; Liu et al., 2025; Yu
et al., 2025a) takes the idea back to a fully online
optimization paradigm, showing major improve-
ments. Inspired by the success of small models
such as DeepScaleR (Luo et al., 2025), we explore
whether these reinforcement learning techniques
can be adapted to improve small language models
in programming education.

3 Methodology

In this work, we hypothesise that training small
language models for program repair will improve
their feedback ability. To validate this hypothesis,
we propose Direct Repair Optimization.

3.1 Background

Before presenting our approach, we first describe
the setup and assumptions underlying our work.

3.1.1 Environment

We assume a typical educational programming
setting, where student submissions are regularly
collected and evaluated using automated assess-
ment tools, such as unit tests, to assign scores and
provide feedback (Paiva et al., 2022). Leverag-
ing this infrastructure, we make two key assump-
tions: first, we assume access to a training dataset
D = {(di, si, ci)}Ni=1, comprising N tuples, where
each tuple consists of a problem description di, a
corresponding student program si, and a correct-
ness label ci, with ci = 0 indicating an incorrect
program and ci = 1 indicating a correct one; sec-
ond, we assume the availability of a grading func-
tion u(s) that assigns a normalized score ci ∈ [0, 1]
to each program si, reflecting its functional correct-
ness based on unit test results.

3.1.2 Definition: high-quality repair

To support the rest of this article, we formalize the
concept of a high-quality repair. A repair is typi-
cally considered high-quality if it meets two key
criteria: functional correctness and closeness to the
student’s original incorrect program (Koutcheme
et al., 2024c; Phung et al., 2023; Joshi et al., 2023;
Zhang et al., 2022). Functional correctness ensures
that the repair successfully resolves the intended
issues, while closeness ensures the repair preserves
the student’s original approach, making the solu-
tion more interpretable and educationally meaning-
ful (Price et al., 2017). Given a candidate repair
R (generated by an LM) for an incorrect program
si, we assess its quality using automated evalua-
tion methods. Functional correctness is measured
through unit test results provided by the grading
function u. For closeness, we use ROUGE (Lin,
2004), as it has been shown to be an effective and
efficient measure for selecting high-quality repairs
(Koutcheme et al., 2023a).



3.2 Direct Repair Optimization

In this section, we introduce Direct Repair Opti-
mization (DRO), our approach to improve language
models’ ability to generate educationally meaning-
ful program repairs. DRO is an online reinforce-
ment learning training method based on variants
of Group Relative Preference Optimization (Shao
et al., 2024). Figure 1 shows an overview of the
method. At each iteration, given an incorrect pro-
gram si, we (1) generate several completions, (2)
compute individual reward scores, based on such
generations and (3) update the model parameters
based both on such rewards and a divergence score.
Below we detail each step.

3.2.1 Sampling answers
Given an incorrect program, we sample G gener-
ations from our language model Gi

1,Gi
2, . . . ,Gi

g ∼
πθ(s

i, di). Our prompt asks our model to fix the
student’s program but to reflect thoroughly before
providing an answer (see Figure 2, Appendix C).
Each generation contains a thought T i

l and a fi-
nal repair Ri

g: Gi = (T i
g ,Ri

g). Following (Shao
et al., 2024), our prompt imposes the language
model to structure its response using a set of pre-
defined tags: the thought pattern should be gener-
ated within <think> . . . </think> and the re-
pair within <answer>. . . </answer> tags.

3.2.2 Computing rewards
For each generation Gi

g, we compute a reward rig,
reflecting the two criteria that define a high-quality
repair (see Section 3.1.2): functional correctness
and closeness (or “proximity”) to the student’s orig-
inal incorrect program. The total reward rig is thus
the sum of two separate components: rig = f i

g+pig.

The functional reward is an outcome-based re-
ward (Luo et al., 2025) computed by extracting
Ri

l and passing it through the available grading
function (i.e., unit tests):

f i
g =


+1.0 if u(Ri

g) = 1

+0.5 if u(Ri
g)− u(si) > 0

−1.0 if Ri
g not compiling

0 otherwise

We reward fully correct repairs (+1.0), give par-
tial credit (+0.5) if the repair improves upon the
student’s original program (i.e., it passes more tests
than si), and penalize repairs that fail to compile or

generations that do not follow the expected for-
mat (–1.0). Our reward encourages the model
to make meaningful progress toward correctness,
even when it cannot fully solve the task. We believe
that partially correct repairs that are better than the
student’s original work could also benefit feedback
generation.

The closeness reward evaluates how well the
generated repair aligns with the student’s original
code:

pig =

{
ROUGE(si,Ri

l) if u(Ri
l) = 1

0 otherwise

By integrating this reward, we encourage the
model not only to solve the programming task but
to do so by building on the student’s own approach,
implicitly forcing reasoning about what the stu-
dent is currently doing and trying to achieve. This
makes the repair (and the resulting feedback) more
pedagogically aligned. We provide this reward only
when the repair is fully correct. Since repairing a
student program inherently requires changes, cor-
rectness and closeness can become competing ob-
jectives. Rewarding both simultaneously for partial
outputs would risk destabilising training.

3.2.3 Updating the model using the rewards
We update the model using the computed rewards
with the dr.GRPO loss function (Liu et al., 2025),
a recent reinforcement learning loss function de-
signed for training stability and efficiency:

Jdr.GRPO = − 1

LG

G∑
g=1

|og |∑
t=1

lm,t (1)

where

lg,t =
πθ(og,t | di, si, og,<t)

πθold(og,t | di, si, og,<t)
Âg

and
Âg = (rig − r̄)

Here, LG is the maximum allowed completion
length, πθold is the model before the current update,
and Âg is the advantage, computed as the reward
deviation from the batch mean r̄. In practice, we
use a clipped surrogate version of this objective that
accounts for multiple updates per generation. For
clarity and space, we provide the full objective and
implementation details in section A.1 (Appendix
A, where we also show how this formulation dif-
fers from the original GRPO loss introduced in the
DeepSeek paper (DeepSeek-AI, 2025) and how it
is better adapted to our task.



d: “Write a program that 
returns a modulo b”

s: (incorrect)

def modulo(a,b):
    return  a // b

teacher

Language model
Being trained

<think> The operand is wrong, we 
should replace “b” with “2” </think> 
<answer>
def modulo(a,b):
        return  a // 2 <answer>

…

<think> The operator is wrong, we 
should replace “//” with “%” </think> 
<answer>
def modulo(a,b):
        return  a % b <answer>

Reward function based 
on unit tests and 

closeness

…

REWARD 1

REWARD 2

REWARD G

GROUP
COMPUTATION …

ADVANTAGE 1

ADVANTAGE 2

ADVANTAGE G
def modulo(a,b):
    return  a // b

Update model parameters

Figure 1: Overview of Direct Repair Optimization.

4 Experiments

In this section, we present the experiments con-
ducted to answer our research question.

4.1 Falconcode: A Real-life Dataset

To answer our research question, we train language
models using FalconCode (de Freitas et al., 2023),
a publicly available dataset containing real-life CS1
students’ solutions to many Python programming
exercises. This dataset distinguishes itself through
the presence of free-form assignments, enabling a
broader evaluation of feedback abilities.

We follow the preprocessing approach of
(Koutcheme et al., 2024a) by selecting the incor-
rect programs from all students’ last submitted so-
lutions (as these specific solutions often reflect stu-
dents who need the most help) for each assignment
that can be automatically evaluated with unit tests.
Following those steps results in training, validation,
and testing splits with 690, 826, and 711 incorrect
programs from 44, 62 and 62 assignments.

4.2 Feedback Tasks

We train our model to generate better program re-
pairs and aim to evaluate whether this improvement
transfers to feedback generation. Specifically, we
assess our models performance on three feedback
types widely studied in prior work (Koutcheme
et al., 2025; Kotalwar et al., 2024; Phung et al.,
2024; Hellas et al., 2023): explanations (E), code
patches (P), and hints (H).

Explanations identify and describe all issues in
a student’s program, while code patches outline the
necessary corrections. These two types of diag-
nostic feedback help students understand their mis-
takes after submitting an incorrect solution. Hints,
in contrast, are more Socratic, guiding students to-
ward resolving one of the issues without giving
away the answer, and are most valuable while stu-
dents are still actively working and may be stuck.

Quality attributes. We evaluate the generated
feedback using quality criteria established in prior
work. Explanations and code patches are assessed
based on accuracy (EA, PA) and selectiveness (ES ,
PS) (Koutcheme et al., 2025). Hints, are evaluated
along three dimensions: correctness (HC), infor-
mativeness (HI ), and concealment (HCon) (Phung
et al., 2024). Table 3 (Appendix A) provides de-
tailed definitions for each attribute. We later detail
our evaluation strategy.

Generation strategy. When generating feedback,
we always prompt our models to generate the three
types of feedback sequentially: first the explana-
tions, then the code patches, and finally a single
hint for the first identified issue F = (E ,P,H).
This ordering draws from prior work, treating the
explanation as a form of chain-of-thought reason-
ing (Wei et al., 2022) that supports the generation
of more accurate patches (Koutcheme et al., 2025)
and a more helpful hint (Phung et al., 2023).

4.3 Models
We train Llama-3.2-3B (Dubey et al., 2024) and
Qwen-2.5-3B (Hui et al., 2024), two language mod-
els with strong performance on programming tasks.
Models in the 3B parameters range strike a practi-
cal balance: they are small enough for deployment
on edge devices (Kotalwar et al., 2024) yet large
enough to rapidly benefit from reinforcement learn-
ing optimization (Sui et al., 2025).

Parameter efficient finetuning. We train both
models using QLoRa (Dettmers et al., 2023), a
Parameter-Efficient Fine-Tuning technique (PEFT)
(Houlsby et al., 2019) that quantises a language
model to 4-bit and adds on top a set of trainable
parameters called adapters, while the base model
remains frozen. Using PEFT techniques has two
benefits: quantized models allow easy edge device
deployment, while adapters allow easy recovery of
the base model functionalities.



4.4 Baseline and Oracle
Our objective is to assess (1) whether reasoning
for repair improves programming feedback and (2)
how close our DRO-trained SLMs’ can approach
the performance of models having access to LLM
supervision. To help answer each sub-question, we
consider two LLM-distillation training references:

• Reason-Repair (RR): For each incorrect pro-
gram si, we prompt an LLM to generate a cor-
rected repair by reasoning, without producing
feedback (see Figure 3, Appendix C). We then
fine-tune our small models on this thought and
repair (T i

LLM ,Ri
LLM ) sequence. These mod-

els allow us to evaluate whether learning to
repair through thoughts using supervised fine-
tuning improves feedback performance.

• Repair-First Feedback (RFF): We adopt the
repair-before-feedback strategy from (Sahai
et al., 2023; Phung et al., 2023), prompting
the LLM (see Figure 4) to first generate a
repair Ri

LLM for the incorrect program as an
intermediate reasoning step to produce the full
feedback F i

LLM . While this two-step prompt-
ing strategy introduces an implicit form of
reasoning similar to chain of thought, we note
that it differs from the more explicit form of
reasoning used in models such as DeepSeek
(Luo et al., 2025). To our knowledge, such ex-
plicit reasoning has not been explored in prior
work for providing feedback. Our small mod-
els are fine-tuned on these repair-feedback
sequences (Ri

LLM ,F i
LLM ). Since this ap-

proach relies on direct access to feedback dur-
ing training, we consider RFF-trained models
as oracles, serving as a strong upper bound.

We use OpenAI GPT-4o-mini (OpenAI, 2024)
as the LLM due to its strong feedback performance
(Koutcheme et al., 2024b) and cost efficiency.

4.5 Prompting Strategy
In our main experiments, we prompt the DRO and
Reason-Repair models to generate feedback F im-
mediately (see Figure 3), without any intermediate
repair step (Koutcheme et al., 2025). This prompt-
ing strategy aims to study whether repair fine-
tuning transfers directly into feedback improve-
ments. In contrast, following (Sahai et al., 2023),
we prompt the Repair-First Feedback models to
first generate a repair for the incorrect programs
before generating the final feedback F i.

We present in Appendix B the full results of
our experiments, prompting all models with both
strategies. The second approach evaluates whether
and to what extent generating repairs before feed-
back effectively enhances small language models’
performance.

4.6 LLMs-as-feedback-judges

We leverage LLMs-as-judges (Zheng et al., 2023;
Thakur et al., 2024) to evaluate our models.
Following the jury-based approach proposed by
(Verga et al., 2024), we use a panel of two lan-
guage models: GPT-4o-mini and Gemini-2.0-flash
(Google DeepMind, 2024). While GPT-4o-mini
and Gemini-2.0-flash are lighter versions of their
full-size counterparts, they remain strong judges for
programming feedback. For instance, GPT-4o-mini
has been shown to perform on par with GPT-4o
for evaluating feedback quality (Koutcheme et al.,
2025). Moreover, (Verga et al., 2024) demonstrate
that ensembles of smaller LLMs of different fami-
lies can outperform even single large models, par-
ticularly by mitigating individual model biases.

For each feedback F generated on the test set,
we prompt both judges (see Figure 6, Appendix C)
to provide binary decisions across all quality crite-
ria (Table 3). We adopt a strict unanimity policy:
a criterion is marked correct only if both judges
agree. While this method does not provide ab-
solute performance guarantees (see Section 6), it
offers a consistent, scalable, and reliable strategy
for comparing the relative effectiveness of different
training approaches.

4.7 Experiment Details

We describe our experiment settings, including spe-
cific hyperparameters used for training and infer-
ence, in section A.3 (Appendix A).

5 Results

In this section, we present the results of our experi-
ments. A more in-depth analysis, including results
for the repair-first strategy, is provided in Appendix
B. For DRO, we show results for training for one
epoch (DRO-1) and two epochs (DRO-2).

5.1 Direct Repair Optimization Results

Table 1 shows the results of our experiments an-
swering the question: How effective is training for
repair in improving feedback abilities? We can
make the following observations.



Table 1: Feedback performance results. We contrast
DRO model performance at n training epoch (DRO-n)
against LLM-distilled training variants RR (Reason-
Repair) for two (BASE) language models, Llama-3.1-
3B and Qwen-2.5-3B. We bold (resp. underline) the
best (resp. second best) results.

Method EA ES PA PS HC HI HCon

Llama-3.1-3B

BASE 37.4 55.4 34.5 25.2 67.5 63.4 67.8
DRO-1 40.5 64.4 36.6 30.4 73.6 69.2 72.0
DRO-2 43.5 64.7 40.5 32.2 72.6 67.9 71.9
RR 42.9 62.9 42.9 41.8 52.7 49.4 56.3

Qwen-2.5-3B

BASE 49.6 69.2 39.1 32.2 85.1 80.0 78.2
DRO-1 53.2 66.0 47.4 34.7 87.3 84.5 80.7
DRO-2 59.8 74.1 51.6 38.7 90.7 88.3 88.3
RR 59.1 70.0 51.1 38.7 91.4 90.0 85.9

Training for repair improves feedback abilities.
DRO improves feedback quality across all crite-
ria for both base models. We also observe gains
when training a model via supervised fine-tuning
on thoughts and repairs generated by a language
model (RR), although hint performance declines
for Llama.

We interpret this success as a form of transfer
learning (Raffel et al., 2020), where training on
one task improves performance on another related
task. Butler et al. (Butler and Winne, 1995) charac-
terize feedback as a two-step process: first, notic-
ing mistakes, and second, communicating them to
the learner. We view program repair as a “super-
task” of the noticing stage: to fix a student’s code,
the model must identify what is wrong (analogous
to generating an explanation) and then determine
how to correct it (analogous to generating a patch).
Manual inspection also suggests that most, if not
all, reasoning traces produced during repair explic-
itly highlight both the underlying issues and their
corresponding fixes.

Unlike full feedback, however, program repair
does not involve pedagogical communication. In
other words, it does not improve the second stage:
the model’s ability to convey information effec-
tively to a learner. Still, we believe the use of
low rank adapters allows the model to preserve
its original pedagogical capabilities while refining
its analytical skills through targeted repair train-
ing. Lastly, since a hint is a form of non-revealing
explanation, stronger repair capabilities indirectly
enhance Socratic feedback.

DRO improvements scale rapidly with base
model performance. We observe that the speed
and magnitude of the improvement at each training
epoch n depend on the base model. Qwen, which is
a stronger base model than Llama, is showing more
substantial gains after just one epoch of training,
and even faster gains after a second training epoch.
These results align with findings from prior work
(DeepSeek-AI, 2025; Luo et al., 2025), suggesting
that performance improvements when training rea-
soning models scale faster as the quality (i.e. initial
performance) of the base model increases.

DRO is competitive with LLM-distillation. Af-
ter two epochs of training (DRO-2), our models
reach performance comparable to LLM-distilled
variants. With Llama-3.1-3B, DRO-2 matches RR
for generating explanations. While it underper-
forms on patches, it significantly outperforms RR
on hint generation, where RR even falls behind the
base model. With Qwen-2.5-3B, DRO-2 surpasses
RR for generating both explanations and patches,
and performs on par for writing hints.

5.2 Refining Distilled Models with Direct
Repair Optimization

Table 2 shows the results of an experiment com-
bining model distillation and reinforcement learn-
ing. Prior work highlights how SLM reasoning
abilities can be bootstrapped by distilling chain-
of-thoughts from an LLM, before being further
enhanced through RL training (Sui et al., 2025).
Following such an approach, we further fine-tuned
Reason-Repair models using DRO for one epoch.

As we can observe, applying Direct Repair Op-
timization on top of the RR models consistently
enhances feedback performance across almost all
types of feedback for both models, allowing the
RR-trained models to reach overall stronger per-
formance (with the exception of a drop in Hint
Concealment HCon). Interestingly, we observe a
stronger boost in diagnostic feedback performance
for our Llama RR model than for our Qwen model.
Looking more closely, both models reach similar
overall performance after RL training, suggesting a
performance trade-off might be happening between
diagnostic and Socratic feedback abilities. We hy-
pothesize that this plateau may stem from the limi-
tations of LoRA adapters, which restrict how much
new “knowledge” the model can acquire (Dettmers
et al., 2023).



Table 2: Feedback performance results. We further
fine-tune the Reasoning-Repair (RR) models with DRO
and show performance benefits of the resulting COMB
models. We bold (resp. underline) the best (resp. second
best) results.

Method EA ES PA PS HC HI HCon

Model: Llama-3.2-3B

RR 42.9 62.9 42.9 41.8 52.7 49.4 56.3
DRO-2 43.5 64.7 40.5 32.2 72.6 67.9 71.9
RFF 43.5 70.9 36.3 40.4 94.2 92.3 89.3

COMB 59.4 72.7 56.3 48.1 53.9 48.9 51.9

Model: Qwen-2.5-3B

RR 59.1 70.0 51.1 38.7 91.4 90.0 85.9
DRO-2 59.8 74.1 51.6 38.5 90.7 88.3 88.3
RFF 72.4 82.4 62.7 50.1 94.4 91.7 89.5

COMB 60.3 72.6 54.7 40.4 91.6 91.7 85.0

5.3 Comparison Against Oracles

Table 2 also contrasts the performance of models
trained with Direct Repair Optimization against the
Repair-Feedback-First (RFF) models. We consider
RFF models as oracles as those were trained with
privileged supervision in the form of both LLM-
generated feedback and repairs used as implicit
reasoning steps.

Despite not using any feedback supervision, our
DRO-2 models perform competitively in several ar-
eas, particularly with Llama-3B, where they closely
approach RFF performance on diagnostic feedback
tasks. Moreover, our combined approach (COMB),
which applies DRO fine-tuning on top of LLM-
distilled models, surpasses RFF on several criteria
for Llama, including both explanation and patch
quality. However, for Qwen, both DRO and COMB
consistently fall short of RFF performance across
most evaluation metrics.

These findings suggest that while DRO can serve
as a valuable complement to LLM supervision, and
even outperform direct finetuning in some settings,
it is not yet a reliable substitute for training models
directly on feedback generated by LLMs. Further
work is needed to understand when and how DRO
can consistently match or exceed the performance
of supervised approaches.

6 Discussion and Conclusion

In this paper, we explored whether training lan-
guage models to reason about students’ programs
could improve feedback and provided insights into
how this strategy compares to LLM supervision.

Summarizing answers to our research question.
Our findings show that (1) reasoning to repair pro-
grams improves a model’s ability to generate feed-
back, (2) DRO can further improve models fine-
tuned on LLM-generated repairs, and (3) such re-
fined models can, in some instances, match the
performance of models trained directly on LLM-
generated feedback.

Implications for programming education. Pro-
gramming education is increasingly turning to
open-source language models, particularly smaller
ones, to support teaching at scale (Liu et al., 2024b).
We are anticipating a shift from using proprietary
LLMs (e.g., GPT-4o) to open-source alternatives
(e.g., LLaMA-3.3-70B) for distillation (Kotalwar
et al., 2024), as the latter can be hosted locally and
offer more control (Denny et al., 2024). Our work
takes a step further by exploring whether we can
eliminate reliance on LLMs and train SLMs di-
rectly on educational data, avoiding both the costs
of third-party APIs and the computational demands
of hosting large open-source models.

Although our work focuses on programming
data, we believe DRO could be adapted to provide
feedback in all educational domains where the cor-
rectness of a student’s work can be automatically
evaluated. Methods such as Direct Repair Opti-
mization can leverage much of the readily available
data in educational platforms (i.e., student submis-
sions and unit tests) without requiring extensive cu-
ration. Recent work has shown that combining such
reinforcement learning methods with large-scale
data can allow relatively small models to reach the
performance of state-of-the-art proprietary models
(Luo et al., 2025).

Extensions to other training approaches. Di-
rect Repair Optimization can easily be combined
with human and LLM-supervised training strate-
gies. Models trained with DRO can be boot-
strapped from a handful of high-quality LLM-
generated examples (Hicke et al., 2023; Ashok Ku-
mar and Lan, 2024; Muennighoff et al., 2025), and
further refined using Reinforcement Learning from
Human Feedback (RLHF) (Woodrow et al., 2025)
to align with specific instructional goals. Such hy-
brid pipelines offer a practical path forward, start-
ing from refined educational data, scaling up perfor-
mance through large-scale reinforcement learning,
and applying targeted human supervision as a final
step to meet specific classroom needs.



Alleviating privacy concerns. Although third-
party LLM hosting services and the use of propri-
etary APIs are becoming more affordable, insti-
tutional policies on sending student data to third-
party services can restrict their use. Our experi-
ments show that institutions with access to modest
computational power (such as a single consumer-
grade GPU)2 can obtain powerful programming
teaching assistant models tailored to their classes.

Such models can also be directly deployed on
students’ laptops (Liu et al., 2024b; Kotalwar et al.,
2024; Ruan et al., 2024), enabling personalized,
timely, and offline support.

Future work. Our future work will explore how
Direct Repair Optimization performs compared to
proprietary and open-source LLMs when trained
on large-scale private educational programming
data as well as public programming data from Hug-
gingFace 3. To this end, we plan to conduct human
expert evaluations and perform A/B studies to eval-
uate how real students respond to such feedback
(SLM vs LLMs). We will also investigate how hu-
man data and preferences can be integrated into the
training pipeline to better align small models with
specific institutional goals.

Looking ahead, we aim to move beyond training
individual models on private institutional data and
tackle the broader challenge of building foundation
models for programming education (Bommasani
et al., 2022). We believe such models could be pre-
trained from publicly open-source large-scale ethi-
cal data, and further refined with federated learning
across multiple institutions.

Limitations

Our study is not without limitations. First, we
conducted all experiments on a single dataset of
Python programming submissions collected from
one institution and did not explore whether our
results hold in other contexts. Second, and per-
haps more importantly, our evaluation lacks human
annotations, expert assessment, or qualitative anal-
ysis. While prior work suggests LLMs can be used
to assess programming feedback (Seo et al., 2025;
Koutcheme et al., 2024b, 2025), such works also
highlight that their judgments are not always per-
fect. Although we partly mitigate this by combin-
ing multiple LLMs-as-judges, our results must still
be interpreted with caution.

2We trained our models on a single 32GB VRAM GPU.
3https://huggingface.co/datasets

We do not claim that DRO-trained models pro-
duce feedback that meets any absolute standard of
quality (e.g., “nearly perfect feedback”). Rather,
our findings establish DRO’s relative performance:
it improves feedback quality over a base untrained
model and can match the performance of mod-
els trained via LLM distillation. Whether such
feedback is ultimately pedagogically effective for
students remains an open question until validated
through human studies.

Additionally, our experiments were limited to
two small models with around 3B parameters.
While prior work suggests that performance im-
proves with base model size (Sui et al., 2025), it
remains to be seen whether the same trends hold
when applying Direct Repair Optimization for im-
proving other language models’ programming feed-
back. Moreover, our experiments also did not in-
clude new state-of-the-art reasoning large language
models such as OpenAI o3. Such models, which
were effectively trained for reasoning, would prob-
ably act as better candidates for LLM-distillation
and combined LLM-distillation and RL training.

Ethics Statement

This work has been conducted in accordance with
national and institutional ethical guidelines. We
recognize the growing importance of ethical con-
siderations in AI research, particularly with respect
to data use, model deployment, and societal impact.

The dataset used in this study is publicly avail-
able to the research community. Our primary goal
is to advance the development and evaluation of
open-source language models for feedback gen-
eration in programming education. By prioritiz-
ing open-source models, we aim to promote trans-
parency, accessibility, and accountability, while
mitigating privacy concerns associated with propri-
etary LLMs.

We also acknowledge broader ethical dimen-
sions of our work. These include questions of fair-
ness and equity in access to high-quality feedback,
the risk that language models may favor certain
interaction styles or learner backgrounds, and the
potential for such technologies to either reduce or
exacerbate global disparities in education. As the
use of LLMs in learning environments grows, we
believe it is essential to continuously assess and
address these challenges in collaboration with edu-
cators, institutions, and affected communities.

https://huggingface.co/datasets


References
Umair Z. Ahmed, Shubham Sahai, Ben Leong, and

Amey Karkare. 2025. Feasibility study of augment-
ing teaching assistants with ai for cs1 programming
feedback. In Proceedings of the 56th ACM Techni-
cal Symposium on Computer Science Education V. 1,
SIGCSETS 2025, page 11–17, New York, NY, USA.
Association for Computing Machinery.

Nischal Ashok Kumar and Andrew Lan. 2024. Im-
proving socratic question generation using data aug-
mentation and preference optimization. In Proceed-
ings of the 19th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2024),
pages 108–118, Mexico City, Mexico. Association
for Computational Linguistics.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, et al. 2022.
On the opportunities and risks of foundation models.

Deborah L. Butler and Philip H. Winne. 1995. Feedback
and self-regulated learning: A theoretical synthesis.
Review of Educational Research, 65(3):245–281.

Badhan Chandra Das, M. Hadi Amini, and Yanzhao
Wu. 2025. Security and privacy challenges of large
language models: A survey. ACM Comput. Surv.,
57(6).

Adrian de Freitas, Joel Coffman, Michelle de Freitas,
Justin Wilson, and Troy Weingart. 2023. Falcon-
code: A multiyear dataset of python code samples
from an introductory computer science course. In
Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, SIGCSE 2023,
page 938–944, New York, NY, USA. Association for
Computing Machinery.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.

Paul Denny, James Prather, Brett A. Becker, James
Finnie-Ansley, Arto Hellas, Juho Leinonen, An-
drew Luxton-Reilly, Brent N. Reeves, Eddie Anto-
nio Santos, and Sami Sarsa. 2024. Computing ed-
ucation in the era of generative ai. Commun. ACM,
67(2):56–67.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, NIPS ’23, page 441, Red Hook, NY, USA.
Curran Associates Inc.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, and Aiesha Let-
man et al. 2024. The llama 3 herd of models.

Google DeepMind. 2024. Gemini 2.0: Our
largest and most capable AI model. https:
//blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/.
Accessed: 2025-04-24.

John Hattie and Helen Timperley. 2007. The power of
feedback. Review of educational research, 77(1):81–
112.

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles
Koutcheme, Lilja Kujanpää, and Juha Sorva. 2023.
Exploring the responses of large language models to
beginner programmers’ help requests. In Proceed-
ings of the 2023 ACM Conference on International
Computing Education Research - Volume 1, ICER
’23, page 93–105, New York, NY, USA. Association
for Computing Machinery.

Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul
Denny. 2023. Ai-ta: Towards an intelligent question-
answer teaching assistant using open-source llms.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Johan Jeuring, Hieke Keuning, Samiha Marwan, Dennis
Bouvier, Cruz Izu, Natalie Kiesler, Teemu Lehtinen,
Dominic Lohr, Andrew Peterson, and Sami Sarsa.
2022. Towards giving timely formative feedback
and hints to novice programmers. In Proceedings of
the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education, ITiCSE-
WGR ’22, page 95–115, New York, NY, USA. Asso-
ciation for Computing Machinery.

Harshit Joshi, José Pablo Cambronero Sánchez, Sumit
Gulwani, Vu Le, Gust Verbruggen, and Ivan Radicek.
2023. Repair is nearly generation: Multilingual pro-
gram repair with llms. In Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artifi-
cial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14,
2023, pages 5131–5140. AAAI Press.

Nachiket Kotalwar, Alkis Gotovos, and Adish Singla.
2024. Hints-in-browser: Benchmarking language
models for programming feedback generation. In
Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

Charles Koutcheme. 2022. Towards open natural lan-
guage feedback generation for novice programmers
using large language models. In Proceedings of the
22nd Koli Calling International Conference on Com-
puting Education Research, Koli Calling ’22, New

https://doi.org/10.1145/3641554.3701972
https://doi.org/10.1145/3641554.3701972
https://doi.org/10.1145/3641554.3701972
http://arxiv.org/abs/2108.07258
https://doi.org/10.3102/00346543065003245
https://doi.org/10.3102/00346543065003245
https://doi.org/10.1145/3712001
https://doi.org/10.1145/3712001
https://doi.org/10.1145/3545945.3569822
https://doi.org/10.1145/3545945.3569822
https://doi.org/10.1145/3545945.3569822
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3624720
http://arxiv.org/abs/2407.21783
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1145/3568813.3600139
http://arxiv.org/abs/2311.02775
http://arxiv.org/abs/2311.02775
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1609/AAAI.V37I4.25642
https://doi.org/10.1609/AAAI.V37I4.25642
http://papers.nips.cc/paper_files/paper/2024/hash/34cc2ded6daba59357134c0b9fb06bfe-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/34cc2ded6daba59357134c0b9fb06bfe-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.1145/3564721.3565955
https://doi.org/10.1145/3564721.3565955
https://doi.org/10.1145/3564721.3565955


York, NY, USA. Association for Computing Machin-
ery.

Charles Koutcheme. 2023. Training Language Models
for Programming Feedback Using Automated Repair
Tools. In Artificial Intelligence in Education, pages
830–835, Cham. Springer Nature Switzerland.

Charles Koutcheme, Nicola Dainese, and Arto Hellas.
2024a. Using program repair as a proxy for language
models’ feedback ability in programming education.
In Proceedings of the 19th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2024), pages 165–181, Mexico City, Mexico.
Association for Computational Linguistics.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto
Hellas, Juho Leinonen, Syed Ashraf, and Paul Denny.
2025. Evaluating language models for generating
and judging programming feedback. In Proceed-
ings of the 56th ACM Technical Symposium on Com-
puter Science Education V. 1, SIGCSETS 2025, page
624–630, New York, NY, USA. Association for Com-
puting Machinery.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto
Hellas, Juho Leinonen, and Paul Denny. 2024b.
Open source language models can provide feedback:
Evaluating llms’ ability to help students using gpt-4-
as-a-judge. In Proceedings of the 2024 Innovation
and Technology in Computer Science Education, Vol-
ume 1, ITICSE ’24.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Juho
Leinonen, Arto Hellas, and Paul Denny. 2024c.
Benchmarking educational program repair.

Charles Koutcheme, Sami Sarsa, Juho Leinonen, Lassi
Haaranen, and Arto Hellas. 2023a. Evaluating dis-
tance measures for program repair. In Proceedings
of the 2023 ACM Conference on International Com-
puting Education Research - Volume 1, ICER ’23,
page 495–507, New York, NY, USA. Association for
Computing Machinery.

Charles Koutcheme, Sami Sarsa, Juho Leinonen, Arto
Hellas, and Paul Denny. 2023b. Automated Program
Repair Using Generative Models for Code Infilling.
In Artificial Intelligence in Education, pages 798–
803, Cham. Springer Nature Switzerland.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2024. RLAIF vs. RLHF: scaling
reinforcement learning from human feedback with
AI feedback. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Mark Liffiton, Brad E Sheese, Jaromir Savelka, and
Paul Denny. 2024. Codehelp: Using large language
models with guardrails for scalable support in pro-
gramming classes. In Proceedings of the 23rd Koli

Calling International Conference on Computing Ed-
ucation Research, Koli Calling ’23, New York, NY,
USA. Association for Computing Machinery.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew
Holmes, Patrick Thornton, and David J. Malan.
2024a. Teaching cs50 with ai: Leveraging generative
artificial intelligence in computer science education.
In Proceedings of the 55th ACM Technical Sympo-
sium on Computer Science Education V. 2, SIGCSE
2024, page 1927, New York, NY, USA. Association
for Computing Machinery.

Suqing Liu, Zezhu Yu, Feiran Huang, Yousef Bulbu-
lia, Andreas Bergen, and Michael Liut. 2024b. Can
small language models with retrieval-augmented gen-
eration replace large language models when learning
computer science? In Proceedings of the 2024 on
Innovation and Technology in Computer Science Ed-
ucation V. 1, ITiCSE 2024, page 388–393, New York,
NY, USA. Association for Computing Machinery.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding r1-zero-like training: A critical
perspective.

Dominic Lohr, Hieke Keuning, and Natalie Kiesler.
2025. You’re (not) my type—can llms generate
feedback of specific types for introductory program-
ming tasks? Journal of Computer Assisted Learning,
41(1):2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Y. Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
2025. Deepscaler: Surpassing o1-preview with a
1.5b model by scaling rl. Notion Blog.

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi,
Brett A. Becker, Michail Giannakos, Amruth N. Ku-
mar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introduc-
tory programming: a systematic literature review. In
Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE 2018 Companion,
page 55–106, New York, NY, USA. Association for
Computing Machinery.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling.

OpenAI. 2024. Gpt-4o system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

https://doi.org/10.1145/3641554.3701791
https://doi.org/10.1145/3641554.3701791
https://doi.org/10.1145/3649217.3653612
https://doi.org/10.1145/3649217.3653612
https://doi.org/10.1145/3649217.3653612
http://arxiv.org/abs/2405.05347
https://doi.org/10.1145/3568813.3600130
https://doi.org/10.1145/3568813.3600130
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://openreview.net/forum?id=uydQ2W41KO
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/3631802.3631830
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3649217.3653554
https://doi.org/10.1145/3649217.3653554
https://doi.org/10.1145/3649217.3653554
https://doi.org/10.1145/3649217.3653554
http://arxiv.org/abs/2503.20783
http://arxiv.org/abs/2503.20783
https://doi.org/10.1111/jcal.13107
https://doi.org/10.1111/jcal.13107
https://doi.org/10.1111/jcal.13107
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2410.21276


2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

José Carlos Paiva, José Paulo Leal, and Álvaro Figueira.
2022. Automated assessment in computer science
education: A state-of-the-art review. ACM Trans.
Comput. Educ., 22(3).

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. 2024. Iterative reasoning preference opti-
mization. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Tung Phung, JosÃ© Cambronero, Sumit Gulwani, To-
bias Kohn, Rupak Majumdar, Adish Singla, and
Gustavo Soares. 2023. Generating high-precision
feedback for programming syntax errors using large
language models. In Proceedings of the 16th Inter-
national Conference on Educational Data Mining,
pages 370–377, Bengaluru, India. International Edu-
cational Data Mining Society.

Tung Phung, Victor-Alexandru Pădurean, Anjali Singh,
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A Methodological and Experimental
Details

A.1 Training loss
The original GRPO loss function is given by:

JGRPO = − 1∑G
g=1|og|

G∑
g=1

|og |∑
t=1

lg,t−βKL(πθ, πref)

where

lg,t =
πθ(og,t | di, si, og,<t)

πθold(og,t | di, si, og,<t)
Âg,t

and Âi is a value called the advantage. Intu-
itively, the advantage tells each generation how
much better it is than the g − 1 other generations.

Compared to popular offline preference methods
such as DPO (Rafailov et al., 2024), which use
explicit preference pairs, the advantage function
helps "ranking" which of the multiple generations,
without relying on pairwise comparisons.

Âg =
(rig − r̄)

std(r)

KL(πθ, πref) is a value called the KL divergence.
This value essentially tells how much the model
responses are diverging from the model prior to the
start of training. We omit the definition of this term
for simplicity and refer the reader to the DeepSeek
paper (DeepSeek-AI, 2025). In essence, JGRPO
is the weighted average of the advantage of all
completions and a β scaled approximation of the
KL divergence.

The following works have found a few issues
with the original formulation.

Removing the KL term. (Yu et al., 2025a) finds
that the KL(πθ, πref) term can slow down training,
as in practice we want to allow the trained model
to diverge from the original policy.

Length response bias. (Liu et al., 2025) show
that the term − 1∑G

g=1|og |
introduces a response

length bias favourizing longer generations. To ad-
dress this issue, the authors propose dividing by a
constant length, being the maximum allowed size
of each generation (LG).

Program difficulty bias. Moreover, they also
show that the standard deviation in the advantage

computation Âg =
(rig−r̄)

std(r) introduces a problem
difficulty bias, where overly hard or overly easy
questions are weighted more heavily in the loss.
In our situation, the "problem" is the student pro-
gram to solve, and this bias would lead to scenarios
where student programs which are too easy to fix
or student programs which are too hard to solve
would be given more attention. Removing the stan-
dard deviation addresses this issue. Taking these
two changes into account yields the proposed loss
function (see equation 1).

Taking into account multiple updates. Because
sampling generations is computationally and time-
intensive, in practice, we use a version of this loss
function which takes into account multiple updates
per generation, as proposed by (Yu et al., 2025a):

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://juliettewoodrow.github.io/paper-hosting/dpo_feedback.pdf
https://juliettewoodrow.github.io/paper-hosting/dpo_feedback.pdf
http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2503.14476
https://doi.org/10.1145/3641554.3701844
https://doi.org/10.1145/3641554.3701844
https://doi.org/10.1145/3641554.3701844
https://doi.org/10.1145/3641554.3701844
http://arxiv.org/abs/2209.14876
http://arxiv.org/abs/2209.14876


Jdr.GRPO = − 1∑G
g=1|og |

∑G
g=1

∑|og |
t=1

[
min

(
lg,t, ĈgÂg)

)]
where

Ĉg = clip(lg,t, 1− ϵlow, 1 + ϵhigh)

constrains the subsequent updates to stay within
a reasonable range of the original policy.

A.2 Feedback Quality Attributes.
Table 3 shows the definitions of the feedback qual-
ity criteria used in our work. These definitions are
taken from prior work in programming feedback.

A.3 Experimental Details
We outline training and inference-specific details.

A.3.1 Training
We train our models using the HuggingFace TRL
library. Unless explicitly outlined below, all hy-
perparameters were left at default values. We train
all models with QLoRa (Dettmers et al., 2023) us-
ing an alpha α = 128 and a rank r = 128. All
models are trained on a single NVIDIA V100 GPU
using our institution’s research cluster. Training for
one epoch on such compute takes approximately 8
hours. Training on an A100 takes less than 5 hours.

dr.GRPO specific hyperparameters. Table 4
shows the hyperparameters used to train our DRO
model. These parameters follow prior work
(DeepSeek-AI, 2025; Luo et al., 2025; Yu et al.,
2025a). We train all models for two epochs on
the training set of FalconCode. For each incor-
rect program, we generate four (G = 4) candidate
reasoning and repairs Gi = (T i

l ,Ri
l). We high-

light that we designed our method to run on an
entry-level GPU with 32GB of RAM. Prior work
(DeepSeek-AI, 2025) suggests that a higher number
can substantially improve results, however, more
generations require more GPU RAM.

Supervised Fine-tuning. Table 5 shows the hy-
perparameters used to train our distilled models
via supervised fine-tuning on the training set of
FalconCode. We train all models for three epochs.

A.3.2 Inference
For generating feedback at inference time, for all
models, we generate both repair and feedback us-
ing greedy decoding. For judging, we query propri-
etary models GPT-4o-mini and Gemini-2.0-flash
using the OpenAI Python API, also using greedy
decoding.

B Results Details

Table 6 shows the full results of all our experiments,
including the repair-first prompting strategy. We
additionally report the performance of our models
on additional clarity criteria.

B.1 Prompting for Repair

Prompting for repair often decreases base model
performance. Prompting the BASE models to
generate a repair before producing feedback de-
creases diagnostic feedback performance. This ob-
servation aligns with findings from (Koutcheme
et al., 2024a), who showed that a model’s ability to
provide diagnostic feedback scales independently
from its ability to perform program repair. In our
case, using SLMs, a poor-quality greedy repair may
degrade feedback quality more than providing no
repair. This does not contradict (Sahai et al., 2023),
as the authors use the Repair-First strategy with
LLMs, which are strong at both repair and feed-
back. (Phung et al., 2023, 2024) extend the single-
repair strategy with multiple repairs, but whether
an SLM benefits from this is unknown. While it
might alleviate this issue, it remains computation-
ally expensive when running models locally.

Prompting to repair before feedback also de-
creases Socratic feedback performance for Qwen
but increases it for Llama.

Prompting for repair brings benefits in diag-
nostic feedback performance for strong base
models. Prompting to repair before feedback de-
creases the performance of the Llama DRO-trained
models for generating diagnostic feedback but in-
creases diagnostic feedback performance for Qwen
models. We hypothesize that this effect is due to
the base model overfitting on low-quality, greedy-
generated repairs. We observe the same phe-
nomenon for the RFF models, which were trained
to repair before feedback: a decrease for Llama, but
an increase for Qwen. For RR and their extended
version with DRO (COMB), the effect is unclear.

B.2 Generations Clarity

We also studied how language models perform in
terms of the clarity (Cle) of the generations. How-
ever, we mostly observe that there does not seem to
be a clear correlation with base model performance,
training method, or prompting strategy.



Name Notation Definition Used in
Accuracy EA, PA All issues in the student’s code (or all required fixes)

are correctly identified.
(Koutcheme et al., 2024b,
2025)

Selectiveness ES , PS No non-existent or irrelevant issues are mentioned;
no unnecessary changes are proposed.

(Koutcheme et al., 2024b,
2025)

Clarity EC , PC The explanation or patch is easy to understand, well-
formatted, and concise.

(Koutcheme et al., 2025)

Correctness HC The hint provides correct information that would
help fix the student’s code.

(Phung et al., 2024; Kotal-
war et al., 2024)

Informativeness HI The hint contains useful information that helps the
student understand or resolve the issue.

(Phung et al., 2024; Kotal-
war et al., 2024)

Concealment HCon The hint avoids revealing the full solution and en-
courages reasoning.

(Phung et al., 2024; Kotal-
war et al., 2024)

Clarity HCle The hint is clearly written, easy to read, and free of
unnecessary complexity.

(Phung et al., 2024; Kotal-
war et al., 2024)

Table 3: Feedback quality attributes used in this study, taken from prior work.

Table 4: GRPO training hyperparameters.

Hyperparameter Value

Learning rate 1e-6
Epochs 2
Warmup ratio 0.1
Max gradient norm 0.2
Scheduler type constant_with_warmup
Optimizer paged_adamw_8bit
Gradient checkpointing True
Batch size 2
Max prompt length 512
Max completion length (LG) 1512

GRPO-specific
Num generations 4
Num iterations 2
Epsilon 0.2
Epsilon high 0.28
Top-p 0.95
Temperature 0.7

Model settings
Precision fp16

LoRA config
LoRA rank (r) 128
LoRA alpha 128

Table 5: Supervised Fine-Tuning hyperparameters.

Hyperparameter Value

Learning rate 1e-4
Epochs 3
Warmup ratio 0.1
Scheduler type cosine
Batch size 8

Model settings
Precision fp16

LoRA config
LoRA rank (r) 128
LoRA alpha 128

C Prompts

This section shows all the prompts used in our
study.



Table 6: Feedback performance results. We contrast DRO model performance at n training epoch (DRO-n)
against LLM-distilled training variants RR (Reason-Repair) and RFF (Repair First then Feedback), as well as the
RR further fine-tuned with DRO(COMB), for two (BASE) language models, Llama-3.1-3B and Qwen-2.5-3B, for
two prompting strategies: Direct Feedback and Repair First.

Llama-3.1-3B Qwen-2.5-3B
Method EA ES ECle PA PS PCle HC HI HCon HCle EA ES ECle PA PS PCle HC HI HCon HCle

Prompting Strategy: Direct Feedback

BASE 37.4 55.4 61.9 34.5 25.2 74.7 67.5 63.4 67.8 72.7 49.6 69.2 60.2 39.1 32.2 68.4 85.1 80.0 78.2 80.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DRO-1 40.5 64.4 62.7 36.6 30.4 75.5 73.6 69.2 72.0 77.6 53.2 66.0 65.3 47.4 34.7 71.4 87.3 84.5 80.7 83.1
DRO-2 43.5 64.7 58.2 40.5 32.2 72.7 72.6 67.9 71.9 75.8 59.8 74.1 59.5 51.6 38.7 68.6 90.7 88.3 88.3 80.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RR 42.9 62.9 65.7 42.9 41.8 72.4 52.7 49.4 56.3 59.6 59.1 70.0 59.5 51.1 38.7 75.8 91.4 90.0 85.9 86.6
RFF 54.9 76.9 56.8 44.6 40.8 66.1 90.3 86.1 87.2 84.8 52.9 65.8 66.2 44.9 30.8 68.6 91.6 89.3 88.5 81.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMB 59.4 72.7 64.4 56.3 48.1 70.5 53.9 48.9 51.9 54.9 60.3 72.6 62.6 54.7 40.4 74.7 91.6 91.7 85.0 86.5

Prompting Strategy: Repair First

BASE 29.0 56.0 58.5 18.7 19.5 51.5 83.0 79.0 82.3 77.8 34.7 57.7 65.8 26.6 24.5 61.6 79.5 74.1 73.1 81.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DRO-1 38.0 71.7 60.1 26.9 31.9 49.8 86.6 82.3 85.9 78.6 61.2 76.5 60.5 51.1 41.6 61.7 90.0 84.1 84.4 78.3
DRO-2 33.5 69.6 66.0 24.8 32.9 51.5 88.2 83.8 89.2 82.8 63.9 82.4 63.7 49.6 45.9 57.7 89.7 83.0 86.8 79.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RR 47.7 76.1 60.3 39.1 41.6 56.4 93.1 88.7 90.3 82.0 46.7 66.2 58.8 40.6 35.6 66.0 88.5 82.3 80.7 82.1
RFF 43.5 70.9 67.4 36.3 40.4 56.0 94.2 92.3 89.3 88.0 72.4 82.4 68.2 62.7 50.1 63.4 94.4 91.7 89.5 79.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMB 50.9 79.3 57.9 44.3 46.3 50.6 94.0 91.7 90.2 82.8 56.8 73.4 58.5 47.7 40.1 64.0 89.0 87.2 81.9 84.2

0

You are a helpful assistant. Before answering a user, you first
think and reason about a proper answer. You always put your
thoughts within <think> </think> tags before providing the
answer.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Your task is to repair the student program so that it fulfils the
problem description. Minimise modifications, keeping your
repair as close as possible to the original incorrect program so
that the student can better understand what was wrong. Put
your repair within <answer> </answer> tags.

<think>
...

<think>
<answer>

repair
</answer> 2

Figure 2: Training prompt. We provide: 0 a system
prompt that asks the language model to reason before
answering, 1 a description of the repair task. This
prompt is used to obtain training data for Reason-Repair
models 2 and is used during training for our DRO
models. Importantly, we prefill the model generation
with a <think> tag to force the generation of the thinking
content.

0

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Tasks

Your tasks are as follows:

1. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

2. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

3. Generate a hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your answer within <feedback> </feedback> tags.

<feedback>
feedback

</feedback> 2

Figure 3: Generation prompt: Providing direct feed-
back. We provide: 0 a description of the repair task,
and ask the language models to generate feedback 1 .



0

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Tasks

Your tasks are as follows:

1. Repair the student program

• Minimise modifications, keeping your repair as close
as possible to the original incorrect program so that the
student can better understand what was wrong.

2. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

3. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

4. Generate a Hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your repair between <repair> and </repair> tags and
your feedback within <feedback> </feedback> tags.

<repair>
repair

</repair>
<feedback>

feedback
</feedback> 2

Figure 4: Generation and training prompt for su-
pervised finetuning. We provide: 0 a description of
the repair task, and 1 ask the LLM models to gener-
ate feedback 2 . The full completion is then learned
by the Repair-First-Feedback models using supervised
finetuning.

0

You are a helpful assistant. Before answering a user, you first
think and reason about a proper answer. You always put your
thoughts within <think> </think> tags before providing the
answer.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, student code

Your task is to repair the student program so that it fulfils the
problem description. Minimise modifications, keeping your
repair as close as possible to the original incorrect program so
that the student can better understand what was wrong. Put
your repair within <answer> </answer> tags.

<think>
...

<think>
<answer>

repair
</answer> 2

3

Use your thought process and your repair to provide feedback
to the student.

Tasks

Your tasks are as follows:

1. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

2. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

3. Generate a Hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your answer within <feedback> </feedback> tags.

<feedback>
feedback

</feedback> 2

Figure 5: Inference prompt: Repair before feedback.
We provide: 0 a system prompt that asks the language
model to reason before answering (only provided for
DRO and Reason-Repair models), 1 a description of
the repair task. We obtain the model generation 2 , and
then in the following turn ( 3 ) ask the model to generate
feedback.



0

You are a computer science professor teaching introductory
programming using Python. You are an expert at evaluating
programming feedback tailored to novices.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description>, student code

Below is the feedback written by a teaching assistant (TA),
which includes an explain and fixes for the bugs in the
program. As well as a hint for the first bug.

feedback

Your task is to evaluate the quality of the TA’s feedback
according to the grading criteria outlined below.

grading criteria

This evaluation will be conducted in two parts

1. Reasoning: Reflect on the quality of the TA’s feedback.

• Reflect on the quality of the feedback, using the grad-
ing criteria as a guide.

• Discuss strengths and weaknesses in the explanation
and hint.

2. Grading List: Conclude with your final assessment for
each criterion.

• If the criterion is fully met, respond with "true"; other-
wise, respond with "false".

Please provide your answer using a JSON format with two
keys:

• "reasoning": your detailed written analysis
• "grading": a dictionary with each criterion as a key

and your final answer (true or false) as the value.

Use only true or false (no other qualifiers) for each grading
criterion in the JSON output.

Figure 6: Judging prompt. We provide our three LLM
judges with a 0 system description describing their
role, 1 a description of the judging task, and the speci-
fication of the response format in json.


