Aligning Small Language Models for Programming Feedback

Towards Scalable Coding Support in a Massive Global Course

Charles Koutcheme
charles.koutcheme@aalto.fi
Aalto University
Espoo, Finland

Abstract

Providing timely and actionable feedback is essential for students
learning to program. While large language models (LLMs) are in-
creasingly used to automate this process, they remain costly to
deploy and raise concerns around privacy and institutional control.
Small language models (SLMs) offer a promising alternative: they
can be run locally and integrated more flexibly into educational
platforms. However, their out-of-the-box performance is often poor,
requiring targeted training to be effective in classrooms. In this pa-
per, we investigate whether a trained 3B-parameter SLM, guided by
rubric-based prompting and a pipeline combining supervised and
preference-based learning, can generate diagnostic feedback that
approaches the quality of larger models. We deploy the model in a
large-scale online programming course and compare its feedback to
its base and fine-tuned variants, Llama-3.1-8B, and GPT-4.1, using
human ratings from 53 teaching assistants and an automated LLM-
as-a-judge analysis. Our results show that careful training narrows
the feedback quality gap between an SLM and an LLM from over 80
to just 10 percentage points on key metrics. The trained SLM more
rarely hallucinates errors, is often rated as helpful by educators, and
only occasionally misses issues in student code. These findings sug-
gest that small models can serve as practical and scalable targeted
feedback solutions in large educational settings, while LLMs may
remain necessary for more comprehensive diagnostic feedback.

CCS Concepts

« Social and professional topics — Computing education.

Keywords

programming feedback, large language models, small language
models, generative Al, open source, automatic feedback

ACM Reference Format:

Charles Koutcheme, Juliette Woodrow, and Chris Piech. 2026. Aligning Small
Language Models for Programming Feedback: Towards Scalable Coding
Support in a Massive Global Course. In To appear in Proceedings of the 57th
ACM Technical Symposium on Computer Science Education (SIGCSE TS 2026),
February 18-21, 2026, St. Louis, Missouri, USA. ACM, New York, NY, USA,
7 pages.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA
2026.

Juliette Woodrow
jwoordrow@stanford.edu
Stanford University
Palo Alto, United States

Chris Piech
cpiech@stanford.edu
Stanford University
Palo Aalto, USA

1 Introduction

Learning to program is challenging for many. These challenges
can be somewhat alleviated with improved teaching practice [30].
A key part of this is providing feedback, which should be timely
and accurate [28]. Large language models (LLMs) have shown ex-
ceptional success in providing such feedback [22], leading to their
growing adoption in classrooms [1, 10, 20, 29, 31]. However, relying
on third-party services that provide access to LLMs can introduce
cost obstacles, privacy concerns, and scalability issues [5, 6].

These constraints are driving a growing shift towards using
smaller, open-source models [12], which can be deployed locally [16,
34] to reduce costs and give educators greater control over their
students’ data. Such models are particularly promising for providing
timely feedback in large-scale classes such as Massive Open Online
Classes (MOOCs), which feature thousands of students working on
hundreds of exercises.

Although small language models (SLMs) show promise for scal-
able and private deployment, recent studies demonstrate that their
feedback quality often falls significantly short of LLMs [17, 18].
SLMs are far more likely to produce inaccurate or hallucinated feed-
back, which can mislead learners and limit the pedagogical value of
automated feedback systems. Improving their performance is there-
fore essential before they can be reliably deployed in real-world
educational settings.

This study contributes to understanding the tradeoffs educators
face when replacing a large language model with a smaller, more
deployable model. While prior work has benchmarked trained small
language models on controlled datasets for generating hints [16], it
remains unclear how they perform in large-scale settings for other
types of feedback. Specifically, we assess their ability to generate
diagnostic feedback, that is, feedback that helps students understand
both what went well and what went wrong in their final programs.
We address the following research question (RQ):

What is the performance tradeoff in diagnos-
tic feedback quality when replacing a large lan-
guage model with a trained small language model?

To answer this question, we adopt a training framework that
transfers feedback capabilities from a large language model (GPT-
4.1) to a small language model (Qwen-2.5-Coder-3B, 3B parameters).
We deploy the trained model within Code In Place, a large-scale
online Python programming course, to generate feedback on four
programming exercises completed in the final week of the course.
We compare its feedback to that of larger models, including GPT-4.1
and Llama-3.1-8B, using two complementary evaluation methods:
(1) expert assessments by teaching assistants, who rate feedback
for correctness and helpfulness, and (2) automated judgment using
an LLM-as-a-judge framework.

https://orcid.org/0000-0002-2272-2763
https://orcid.org/0009-0006-8097-093X
https://orcid.org/0000-0001-5140-0467

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

Our results show that, while untrained small language models
lagged far behind LLMs, by more than 80 percentage points on
key feedback metrics, targeted training can close most of this gap,
reducing the difference to just 10 percentage points compared to
GPT-4.1-level feedback quality. In particular, our trained SLM rarely
hallucinated errors and was frequently rated as helpful by educators,
although it sometimes missed issues in student programs. These
findings mark a meaningful step toward scalable, high-quality pro-
gramming education, where small, locally deployable models could
eventually support learners directly on their own devices.

Our study also makes the following technical contributions:

e We introduce a rubric-based prompting method to align
language models’ feedback with instructional goals.

e We design and evaluate a training pipeline that combines
supervised fine-tuning with preference learning, and analyze
its impact on the feedback quality of small language models
in a large-scale, open-access programming course.

o We release our code for training small language models for
diagnostic feedback: €) cip25-aiep

2 Related Work

While some prior work has fine-tuned large, proprietary models
for feedback-related tasks [21], our study builds upon recent efforts
to fine-tune open-source language models using preference-based
methods such as Direct Preference Optimization (DPO) [26], a tech-
nique that trains models through ranking or pairwise comparisons
to encourage preferred outputs. In programming education, Ku-
mar et al. [2] use DPO to train models for Socratic debugging and
dialogue, while Hicke et al. [12] combine supervised and preference-
based approaches to support retrieval-augmented generation for
answering student forum questions. Similar preference-based meth-
ods have also been used in other educational domains: Woodrow
et al. [32] and Scarlatos et al. [27] apply supervised finetuning and
DPO to provide feedback in probability and mathematics courses,
leveraging preference data collected from humans and LLMs. These
studies collectively demonstrate the broad applicability of reinforce-
ment learning and preference-based fine-tuning for educational
feedback, though none address diagnostic programming feedback.
Closer to our work is Kotalwar et al. [16], who fine-tune small lan-
guage models to generate Socratic hints using LLM-generated data
and supervised learning. However, our work differs in three ways:
(1) they do not investigate diagnostic feedback, (2) their approach
does not incorporate preference learning and, (3) their evaluation
is not conducted in a large-scale course setting.

3 Context

We conduct our study in the context of Code In Place!, a large-scale
MOOC designed to teach students worldwide the fundamentals of
Python programming. The course is primarily intended for people
who have no prior programming experience. The course runs annu-
ally over six weeks and combines pre-recorded lectures, hands-on
coding exercises, and weekly live Zoom sessions. Each session is
led by a volunteer TA, with one TA assigned to every ten students,
creating a supportive peer-driven learning community.

!https://codeinplace.stanford.edu/

Koutcheme et al.

By the end of the course, students are expected to grasp core
programming concepts such as control flow, loops, console in-
put/output, graphics, lists, and dictionaries. Our study takes place
during the fifth edition of the course, offered in spring 2025.

In the final week, students are invited to complete four voluntary
programming assignments, referred to as diagnostic exercises, de-
signed to assess their mastery of the course content. The exercises
include: (1) determining astronaut height eligibility, (2) identifying
even or odd numbers from 1 to 100, (3) processing a non-decreasing
number sequence, and (4) fixing a buggy graphics program to draw
two cars at given positions. These exercises are intended to consol-
idate key skills learned throughout the course, including variables,
loops, input/output, and graphics. To mimic an exam setting, stu-
dents are given three hours to complete the exercises, during which
they can run their code but have no access to unit tests or automated
grading. We consider only their last submitted program.

Our goal is to provide students with diagnostic feedback, which
clearly highlights both strengths and errors in a student’s submis-
sion in a constructive tone, going beyond basic test-case feedback.
Such feedback can prevent discouragement in struggling students
while reinforcing confidence in those who succeed [9].

Historically, feedback on diagnostic exercises in early editions of
our MOOC was powered by teaching assistants completing grading
rubrics [33]. Each rubric consisted of items aligned with key aspects
of the intended problem-solving strategy, scored on a Likert-like
scale and accompanied by representative errors. Teaching assis-
tants were asked to justify their selections with short, one-line
explanations. Figure 1 shows an example rubric.

Example Grading Rubric

Looping: Correct / Minor error (e.g., off-by-one) / Major issue
Checking Even or Odd: Correct / Minor error / Major issue
Printing: Correct / Minor formatting / Major issue

Syntax Errors: None / Minor / Major

Figure 1: Illustrative version of the grading rubric used to
assess the even or odd exercise.

Given how tedious this task can be for TAs, we began explor-
ing the use of generative language models to support the teaching
team. Prior to the advent of powerful LLMs, a popular line of work
framed programming feedback as a multi-label classification task,
with each label corresponding to a mistake or success pattern de-
fined in grading rubrics [23, 33]. Building on this foundation, we
adapt a rubric-based structure to prompt modern language models
for programming feedback generation. We found rubrics benefit
both learners and educators: (1) they provide a structured scaf-
fold that aligns feedback with each exercise’s learning objectives,
potentially mitigating hallucinations [11], and (2) they allow in-
structors to quickly identify patterns of student difficulties at scale.
In the 2023 (resp. 2024) edition of the course, we piloted the use of
GPT-3.5-turbo (resp. GPT-40) to automatically fill in rubrics and
generate short explanations, using one-shot examples based on
human-annotated feedback. Building on this experience, we now
investigate whether trained small language models can also support
the provision of rubric-based diagnostic feedback and offer a more
cost-effective and scalable solution for future course offerings.

https://github.com/KoutchemeCharles/cip25-aiep
https://codeinplace.stanford.edu/

Aligning Small Language Models for Programming Feedback

4 Methodology

In this section, we revisit the task of diagnostic feedback, and then
present our training methodology for improving SLMs.

4.1 Generating Feedback

To elicit high-quality diagnostic feedback, we refined the rubric-
based prompting approach used in prior course deployments, incor-
porating observations from earlier pilot studies and recent advances
in language model prompting. Figure 2 illustrates our feedback
prompt template.

We provide a language model with the problem description,
the student code, and the grading rubric as input and instruct the
language model to provide diagnostic feedback using a structured
approach described below.

Step 1 - Reasoning. First, the language model is asked to reason
about the student’s mistakes and successes using the provided
rubric. Specifically, we adopt zero-shot chain-of-thought [15] (i.e.,
we pre-fill the model answer with "Let’s think step-by-step”) to
enforce the model to lay out its analysis while allowing space to
reflect freely without phrasing sentences that would need to be
understandable by students.

Step 2 - Grading. Next, the language model is instructed to fill
in the grading rubric by selecting the appropriate option for each
item. This step consolidates the model’s reasoning into a structured
decision, scaffolding the feedback generation process. Moreover, it
benefits educators by enabling systematic comparison of student
submissions and analysis of common errors at scale.

Step 3 - Feedback. Finally, the model provides feedback address-
ing each student directly. We explicitly instruct the model to (1)
begin its feedback by highlighting all positive items in the student
submission, (2) explain the first two mistakes in their code accord-
ing to the grading rubric, and (3) finish with encouragements. This
strategy, sandwiching negative feedback between positive praises,
is meant to ensure feedback is received constructively [3]. During
our pilot studies, we observed that students who failed multiple
rubric items often received lengthy negative feedback. Such feed-
back could become overwhelming and demotivating. To address
this, our prompt explicitly instructs the language model to focus
negative feedback on only the first two mistakes, following the
order of items in the rubric, which reflects the logical progression
of the intended problem-solving strategy. While this approach does
not address all mistakes in a student’s submission, we believe it is
preferable for students to focus on a few key issues rather than risk
disengagement due to information overload [8, 28].

4.2 Fine-tuning Small Language Models:
Distilling Knowledge From LLMs

In this subsection, we formalise our approach to fine-tune a small
language model g (the student LM) to provide high-quality diagnos-
tic feedback. Let us assume access to a dataset D = {(d, s’, ri)}f\il
consisting of N triplets of problem descriptions d?, student pro-
grams st, and rubrics r. We also assume access to a teacher LLM,
77, available via an online API (e.g., GPT-40 via the OpenAI API),
which is proficient at providing feedback but expensive to query.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

In this work, we propose to transfer some of the teacher LLM’s
feedback capabilities into the small model using a combination of
supervised fine-tuning and preference-based learning.

Feedback prompt template

Inputs: Problem description, student code, grading rubric

Outputs:

(1) Reasoning: Reflect on the quality of the student’s submission, consider-
ing each rubric item in order.

(2) Rubric grading: For each rubric item, choose the rubric option that
corresponds to it.

(3) Feedback:
o Highlight all satisfied rubric items.
o Identify and explain only the first two mistakes.

L o Ensure feedback is clear, encouraging, and actionable.)

Figure 2: We prompt our language models to provide feedback
using rubric scaffolding and a chain of thought approach.

Step 1- Supervised fine-tuning. Given the lack of human anno-
tations, following Kotalwar et al.[16], we leverage supervised fine-
tuning (SFT) using feedback generated by a teacher model. For each
incorrect program in the training set, we use the structured prompt
described in Section 4.1 to obtain teacher outputs (t, g, fi) ~
JTT(Si, d, ri), where tf. is the model’s reasoning (thought), gi. the
filled-in rubric, and f} the generated feedback. We generate such
feedback using greedy decoding. The student model is then fine-
tuned using a standard negative log-likelihood (NLL) loss over these
outputs, yielding the SFT model . SFT acts as a basic form of
knowledge distillation, where the student imitates the teacher.

Step 2 - Preference-based fine-tuning. To further improve
the model, we use a variant of Direct Preference Optimization
(DPO) [26], an offline algorithm that updates models based on
ranked output pairs. In our setting, this requires constructing a
preference dataset for training: P = {(x%, yf}V i yliose)}?i 1» Where
xi = (di, st ri) is the input, and each output yi = (ti,gi,fi) consists
of a thought process, grading decision, as well as written feedback,
with y";v . Deing preferred over yliose in terms of overall feedback
quality. Prior work built such datasets by generating multiple out-
puts per input and ranking them via human annotators [32] or
LLM-as-a-judge systems [27]. While very effective, these methods
can be costly to scale.

Instead, we design our approach to squeeze as much knowledge
as possible from the available teacher generations. To that end, we
automate preference construction by treating the teacher’s out-
put as the preferred response y";vin and the student SFT output as
the dispreferred one yliose. This strategy aligns with recent work
in programming education that leverages existing human annota-
tions to create preference pairs [2, 12]. We generate the SFT output
(g 9ogp fig) = st (x) using greedy decoding.

Prior work suggests that language models trained with the stan-
dard DPO loss [26] in settings where both outputs are syntactically
similar can sometimes struggle to capture meaningful learning sig-
nals, leading in turn to degraded performance [4], a trend we also
observed in our preliminary experiments using teacher LLM and
SFT model outputs.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

To address this, we adopt the Noise Contrastive Alignment (NCA)
loss [4], a variant of DPO that provides a more stable learning signal.
NCA has shown improved results on math and coding tasks by en-
forcing alignment with the preferred output while still accounting
for the dispreferred one. We refer readers to the original work for
technical details.

4.3 Experimental Setup

We use GPT-4.1 as the teacher LLM (777), selected based on OpenATI’s
benchmarks showing stronger performance on programming tasks
compared to GPT-4o0. For the student model (7g), we fine-tune
Qwen-2.5-Coder-3B [14], a 3 billion parameter language model
that currently leads performance among non-reasoning models in
its size class on several open-source benchmarks. We deliberately
chose a student model of this scale to reflect our long-term goal of
deploying feedback models directly on students’ devices. Models in
the 3B range offer a practical tradeoff between accuracy, inference
speed, and memory footprint.

Our training dataset (D) consisted of all collected student submis-
sions for the fourth edition of our MOOC, with roughly 1,000 unique
submissions per exercise (after duplicate elimination with AST nor-
malization). We fine-tune the student model using LoRA [13], a
parameter-efficient finetuning (PEFT) technique that trains only a
small set of additional parameters, keeping the base model frozen.
We report our training hyperparameters in our released code base.

5 Evaluation

After training, we collected student submissions from the diagnos-
tic exercises and generated feedback for each solution using both
the trained SLM and GPT-4.1. Feedback generation followed the
approach described in Section 4.1. We focus on two complemen-
tary evaluation perspectives presented in this section: (1) expert
evaluations from teaching assistants and (2) automated assessment
using an LLM-as-a-judge, both aimed at answering our (RQ).

5.1 Feedback Quality Criteria

Butler et al.[3] suggest that effective feedback involves two main
stages: first, noticing mistakes, and second, responding to those er-
rors. Drawing on this perspective and recent work in educational
feedback [1, 18, 27, 32], we adopt correctness and helpfulness as the
primary criteria guiding our evaluation. Specifically, correctness
reflects whether the feedback accurately identifies the first two er-
rors in the student program (while highlighting the strengths of the
solution); helpfulness captures whether the information is commu-
nicated in a way that meaningfully supports student understanding
and learning. By definition, incorrect feedback cannot be help-
ful [25]; however, even accurate feedback may be unhelpful if, for
instance, it uses unfamiliar concepts or is not beginner-friendly [11].

To enable a more detailed analysis, we further decompose cor-
rectness into four dimensions drawn from prior work [19, 27]:
perceptivity (whether at least one mistake is identified), accuracy
(whether the first two mistakes are correctly identified), selectivity
(whether the feedback avoids hallucinating errors not present in the
student’s program), and positivity (whether the feedback maintains
a constructive tone and highlights correct aspects of the solution).

Koutcheme et al.

We do not decompose the helpfulness criterion, and instead, we
rely on human annotators to assess it; We use high-level correctness
and helpfulness as the two main criteria in our human evaluation
and leverage the detailed criteria in our LLM evaluation.

5.2 Human Evaluation

We recruited volunteer teaching assistants to evaluate the quality
of the feedback. Each TA was assigned five student submissions
per exercise, sampled using Malik et al. [23] zipf-aware selection
strategy to ensure coverage of both typical and atypical solutions.
For each student submission, TAs were shown two anonymized
feedback responses, one from each model, in a randomized order
to ensure blindness. They rated each response using our two main
quality criteria: correctness and helpfulness (both binary).
Following Woodrow et al. [32], they also indicated which feed-
back they would prefer to provide to a student, or whether they
liked both (or neither) responses. This dual approach captures both
objective quality judgments and subjective pedagogical preferences.
TAs also had the option to add comments to justify their annotation.

5.3 LLM Evaluation

To scale our evaluation, we adopt an LLM-as-judge approach [35],
which has proven reliable in prior work for assessing feedback qual-
ity at scale [12, 18, 19, 27, 32]. We use this setup to contextualize the
performance of our trained model (NCA), comparing it against two
baselines: its base version (Qwen-2.5-Coder-3B) and the supervised
fine-tuned version (SFT). We also include Llama-3.1-8B [7] as a
reference point, given its widespread use in recent studies training
language models for educational feedback [2, 16, 27, 32].

Our evaluation follows the Ground-truth Assisted Grading (GAG)
strategy from Koutcheme et al. [18], in which an LLM (here, GPT-
4.1) compares a model-generated feedback response to a trusted
reference. Since we do not have human-written references, we
use GPT-4.1-generated feedback that has been independently vali-
dated by teaching assistants as both correct and helpful, ensuring
the reference feedback is of high quality. As a reminder, GPT-4.1-
generated feedback is an upper bound on the quality of feedback
we can obtain because the SLM is trained from outputs of the LLM.
While this setup limits our evaluation to submissions where GPT-
4.1 produces high-quality responses, it offers a more reliable way
to answer our research question and understand the performance
tradeoff when replacing GPT-4.1 with a trained small language
model. Specifically, given a problem description, student code, and
this validated reference feedback, we prompt GPT-4.1 to judge the
evaluated feedback using the detailed correctness quality criteria
outlined earlier: perceptivity, accuracy, selectivity, and positivity.

6 Results

In total, 5,452 students completed the diagnostic exercises. We had
53 TAs volunteering to annotate a total of 1060 student submissions,
resulting in 265 annotations for each exercise.

6.1 Human Evaluation: Absolute Quality

Figure 3 shows the performance of our trained model (Qwen-2.5-3B
NCA trained) against GPT-4.1, as evaluated by our teaching assis-
tants across our exercises. We can make the following observations:

Aligning Small Language Models for Programming Feedback

B LLM Helpful [LLM Correct Only ~ [SLM Helpful [SLM Correct Only

=
o

o
®

o
EY

o
>

o
N

Fraction of Positively Rated Solutions

o
o

Draw Car

Astronaut Even/Odd Non-decr. Seq.

Figure 3: Proportion of positively rated feedback from
the LLM (GPT-4.1) and the SLM (Qwen-2.5-Coder-3B, NCA-

trained) across four diagnostic exercises, as evaluated by
teaching assistants for correctness and helpfulness.

In terms of correctness, the gap between our trained SLM and
GPT-4.1 remains relatively consistent: GPT-4.1 produces, on aver-
age, 11 percentage points more correct and helpful feedback. An
exception is the even/odd exercise, where the gap narrows to just
4 percentage points. Both models perform best on the draw-car
exercise. GPT-4.1 struggles most with even/odd, while our SLM
performs worst on the non-decreasing sequence task.

We observe similar trends when analyzing helpfulness. As a re-
minder, feedback can be correct without being helpful, but helpful
feedback must be correct. GPT-4.1 shows a small drop in helpful-
ness compared to correctness: losing 0.06 percentage points on the
draw-car, even/odd, and non-decreasing sequence exercises, and
0.04 on the astronaut exercise. The small language model exhibits
an average drop of 0.04 points on even/odd, non-decreasing se-
quence, and draw-car. However, it generates significantly less (0.09
percentage points lost) helpful feedback than correct feedback on
the astronaut exercise.

6.2 Human Evaluation: Subjective Preferences

Figure 4 presents teaching assistants’ preferences between LLM
and SLM feedback, considering only cases where both responses
were rated correct and helpful.

SN LM mmm SLM mmE Both

38% 40% 38% ﬂ

Astronaut Even/Odd Non-decr. Draw Car

Figure 4: Teaching assistants’ preferences between LLM and
SLM feedback for responses rated as both correct and helpful.

Our results suggest that for the Astronaut, Even/Odd, and Non-
Decreasing Sequence exercises, SLM feedback is at least as preferred
as LLM feedback in roughly 65% of cases. The only exception is
the Draw Car exercise, where only 55% of feedback from the SLM
meets this threshold, indicating a more noticeable tradeoff when
replacing the LLM with the SLM.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

To better understand TA preferences, we conducted a compara-
tive linguistic analysis of their comments. Using GPT-4.1, we anno-
tated each comment with a normalized superlative adjective (e.g.,
“more clear”, “more generalizable”), then standardized them into a
concise set (e.g., “clear”, “concise”, “supportive”). We then computed
the standardized comments frequencies across responses preferring
LLM vs. SLM feedback and calculated log odds ratios (with Laplace
smoothing) [24] to identify qualities distinctive of each model.

In order of importance, TAs described LLM feedback as: more
complete, friendly, supportive, positive, and specific. In contrast, SLM
feedback was more often characterized as more generalizable, less
harsh, more constructive, and more detailed.

These differences suggest that, even after LLM distillation, the
SLM retains a distinctive feedback writing style. Zhou et al. [36]
posits that fine-tuning reorganizes existing knowledge to match task
expectations, but that most of a model’s core capabilities come from
pretraining. This might explain why some TAs prefer one feedback
over the other even when both are perfectly rated.

6.3 LLM Evaluation

After evaluating the model’s overall performance with expert judg-
ment, we now turn to a more detailed analysis of correctness using
an LLM-as-a-judge framework. Figure 5 presents our results.

[Llama-3.1-8B [Qwen2.5-3B = SFT [NCA

0.95 0.96

Proportion
e o 9o »
» o L =}

o
N

0.0 -
accuracy perceptivity selectivity positivity

Figure 5: Proportion of feedback generated by four small
models that satisfy each criteria as judged by GPT-4.1.

Smaller language models (Qwen-2.5-3B and Llama-3.1-8B) strug-
gle to generate high-quality feedback. Accuracy remains below
20%, indicating that these models rarely identify both of the first
two errors in student code. Although perceptivity is slightly higher
(around 44-50%), it still falls short of a reliable baseline. Combined
with low selectivity scores (below 40%), these findings confirm that
untrained SLMs do indeed hallucinate issues [11, 18]. Interestingly,
Qwen-2.5-3B performs comparably to Llama-3.1-8B in accuracy, re-
flecting the advances of recent 3B-scale models. Additionally, Qwen
is generally more selective than Llama. However, its lower percep-
tivity suggests the 3B parameter model adopts a more conservative
approach to error identification.

Training yields substantial performance gains across all crite-
ria. Supervised fine-tuning (SFT) alone raises accuracy to 75% and
selectivity to 95%, while preference learning with NCA provides
additional improvements, pushing accuracy to 77% and selectivity
to 96%. These incremental gains suggest that even when reusing the
same teacher-generated data, preference-based optimization can
help refine model behavior. However, broader improvements may
require exposing the model to a more diverse range of generations
or learning scenarios [27].

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

The trained SLM achieves 88% perceptivity, typically identifying
at least one meaningful issue in most submissions, and over 94% se-
lectivity, rarely hallucinating errors. This suggests that the trained
SLM could be particularly effective at generating hints or targeted
feedback on single issues. Our 3B model achieves comparable cor-
rectness to Kotalwar et al. [16] 8B model trained for hint generation,
reflecting the steady progress of small open-source models.

Looking closer, the lower overall accuracy and very high pos-
itivity suggest a cautiousness in flagging errors, with the model
sometimes missing mistakes. Put differently, if we view feedback
generation as multiple binary classification tasks [33], the model
tends to make more false negatives than false positives which, in
our MOOC setting, is the least harmful type of error as it avoids
discouraging first time programming students. We observed earlier
that our SLM exhibited already higher selectivity and lower per-
ceptivity than LLama before training. Those observations reinforce
our hypothesis that certain base model properties, such as caution
in error identification or generation style (e.g. supportiveness) may
remain even after supervised fine-tuning and preference learning.

6.4 Case Study: Student Perceptions

We deployed feedback to all 5,452 students who completed the di-
agnostic exercises. Each student was randomly assigned feedback
from either the LLM or the SLM for three of the four assignments
(Astronaut, Even/Odd, and Non-decreasing), while all students re-
ceived LLM feedback for the Draw-Car exercise due to an imple-
mentation error. When viewing their feedback, students could op-
tionally indicate whether it helped them learn something by giving
a thumbs up or thumbs down. Students were not required to view or
respond to their feedback. In total, 313 students responded. Almost
all of them gave positive ratings across all exercises and models
(at least 95% positive in each), indicating that students generally
perceived the feedback as helpful regardless of model source.

Interpreting these results requires caution: participation was
optional, the missing data is not random, and students may prefer
praise over constructive criticism. Despite these limitations, the
student ratings broadly mirrored TA preferences, with a slight
preference for LLM feedback over SLM feedback.

7 Discussion

Implications for teaching and learning. Our findings sug-
gest that modest training significantly boosts small language model
(SLM) performance. While SLMs are not yet full replacements for
LLMs in generating comprehensive diagnostic feedback, they can
still play a valuable role in large-scale learning environments when
deployed alongside LLMs. For example, SLMs can support light-
weight tasks such as providing timely Socratic hints or explaining
a single error during the coding process. These models can be de-
ployed locally using tools like WebLLM, enabling fast, low-latency
feedback, even offline [16]. In contrast, LLMs can be reserved for
more detailed feedback when students complete their exercises.
Trained SLMs can also be used for full diagnostic feedback, par-
ticularly on exercises where they perform well. Identifying such
exercises could rely on LLM-as-judge evaluation [35], or emerging
methods that relate a model’s program repair capabilities to its
feedback generation quality [17].

Koutcheme et al.

Importantly, our results also highlight the importance of base
model selection. Educators should consider not only initial model
performance but also the generation style of the model, as some
characteristics can remain even post-training.

Limitations. Our study has several limitations. First, our evalu-
ation focuses on a single small language model and a single large
language model, within the context of one Python MOOC and
just four exercises. While our findings are consistent with prior
work, their broader generalization should be confirmed through
replication studies in other courses and contexts. Future studies
should also assess the effectiveness of newer small and large rea-
soning models for feedback generation. We also did not directly
compare our rubric-driven prompting approach to a more open-
ended baseline. In this work, rubric-based prompting is treated as
an integral part of the feedback generation strategy, rather than a
variable under evaluation. Future work should isolate and investi-
gate the specific contribution of rubrics prompting. Moreover, our
prompts did not incorporate program execution results or unit test
information [25], instead relying solely on model-based correctness
detection. Including unit test outcomes could help filter out cor-
rect solutions or provide more targeted guidance to models about
which aspects of student code need improvement. Finally, we did
not assess inter-rater reliability among the course staff which may
affect the consistency of subjective judgments.

Future Work. For future work, we plan to explore advanced
training strategies to further narrow the performance gap between
SLMs and LLMs. One direction involves applying human prefer-
ence optimization techniques [32], using the large volume of TA
preference data collected in this study to refine the model for future
course iterations. In parallel, we aim to leverage the broader dataset
spanning all exercises in our MOOC to support generalization and
to explore additional points in the course where feedback models
could be effectively deployed. Ultimately, our goal is to deploy these
models directly in students’ development environments, evaluate
their impact on learning outcomes, and compare these results to
studies using LLM-based feedback [6].

8 Conclusion

This work aimed to answer the following research question: What
is the performance tradeoff in diagnostic feedback quality
when replacing a large language model with a trained small
language model? Our results suggest that while replacing an LLM
with a trained SLM may lead to some issues in student solutions be-
ing omitted, the feedback provided by SLMs is still often perceived
as helpful by educators, as it typically highlights at least one key
issue in the student’s program and more rarely hallucinates errors.
These findings highlight the potential of hybrid systems that com-
bine the efficiency of small models with the advanced capabilities
of LLMs, supporting scalable feedback in large educational settings.

Acknowledgments

We thank all the teaching assistants who participated as annotators
in our study. The full list of contributors is available in our project
repository: €) cip25-aiep. This work was in part supported by
Research Council of Finland grant #367787

https://github.com/KoutchemeCharles/cip25-aiep

Aligning Small Language Models for Programming Feedback

References
[1] Umair Z. Ahmed, Shubham Sahai, Ben Leong, and Amey Karkare. 2025. Feasibility

[11

]

[12]

(13

[14

[15

[16]

[17]

(18]

[19

Study of Augmenting Teaching Assistants with Al for CS1 Programming Feed-
back. In Proceedings of the 56th ACM Technical Symposium on Computer Science
Education V. 1 (Pittsburgh, PA, USA) (SIGCSETS 2025). Association for Computing
Machinery, New York, NY, USA, 11-17. https://doi.org/10.1145/3641554.3701972
Nischal Ashok K. and Andrew Lan. 2024. Improving Socratic Question Generation
using Data Augmentation and Preference Optimization. In Proceedings of the 19th
Workshop on Innovative Use of NLP for Building Educational Applications (BEA
2024). Association for Computational Linguistics, Mexico City, Mexico, 108-118.
Deborah L. Butler and Philip H. Winne. 1995. Feedback and Self-Regulated
Learning: A Theoretical Synthesis. Review of Educational Research 65, 3 (1995),
245-281. https://doi.org/10.3102/00346543065003245

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. 2024.
Noise Contrastive Alignment of Language Models with Explicit Rewards. In
Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada.
Badhan Chandra Das, M. Hadi Amini, and Yanzhao Wu. 2025. Security and
Privacy Challenges of Large Language Models: A Survey. ACM Comput. Surv. 57,
6, Article 152 (Feb. 2025), 39 pages. https://doi.org/10.1145/3712001

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative Al. Commun.
ACM 67, 2 (Jan 2024), 56-67. https://doi.org/10.1145/3624720

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

Rodrigo Duran, Albina Zavgorodniaia, and Juha Sorva. 2022. Cognitive Load
Theory in Computing Education Research: A Review. ACM Trans. Comput. Educ.
22, 4, Article 40 (sep 2022), 27 pages. https://doi.org/10.1145/3483843

John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Edu-
cational Research 77, 1 (2007), 81-112. https://doi.org/10.3102/003465430298487
Arto Hellas, Juho Leinonen, and Leo Leppéanen. 2024. Experiences from Integrat-
ing Large Language Model Chatbots into the Classroom. In Proceedings of the
2024 on ACM Virtual Global Computing Education Conference V. 1 (Virtual Event,
NC, USA) (SIGCSE Virtual 2024). Association for Computing Machinery, New
York, NY, USA, 46-52. https://doi.org/10.1145/3649165.3690101

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpaa,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference
on International Computing Education Research - Volume 1 (Chicago, IL, USA)
(ICER °23). Association for Computing Machinery, New York, NY, USA, 93-105.
https://doi.org/10.1145/3568813.3600139

Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul Denny. 2023. AI-TA: Towards
an Intelligent Question-Answer Teaching Assistant using Open-Source LLMs.
arXiv:2311.02775 [cs.LG]

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-Coder Technical
Report. arXiv preprint arXiv:2409.12186 (2024).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. In Proceedings of
the 36th International Conference on Neural Information Processing Systems (New
Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA.
Nachiket Kotalwar, Alkis Gotovos, and Adish Singla. 2024. Hints-In-Browser:
Benchmarking Language Models for Programming Feedback Generation. In
Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Charles Koutcheme, Nicola Dainese, and Arto Hellas. 2024. Using Program Repair
as a Proxy for Language Models’ Feedback Ability in Programming Education. In
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational
Applications (BEA 2024). Association for Computational Linguistics, Mexico City,
Mexico, 165-181.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen,
Syed Ashraf, and Paul Denny. 2025. Evaluating Language Models for Generating
and Judging Programming Feedback. In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 1 (Pittsburgh, PA, USA) (SIGCSETS
2025). Association for Computing Machinery, New York, NY, USA, 624-630.
https://doi.org/10.1145/3641554.3701791

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen, and
Paul Denny. 2024. Open Source Language Models Can Provide Feedback: Evalu-
ating LLMs’ Ability to Help Students Using GPT-4-As-A-Judge. In Proceedings

[21

[22

[23

[24

[25

[26

[27

[30

(31

[32

[33

[34

[35

[36

]

]

]

SIGCSE TS 2026, February 18-21, 2026, St. Louis, Missouri, USA

of the 2024 Innovation and Technology in Computer Science Education, Volume 1
(Milan, Italy) (ITICSE °24). https://doi.org/10.1145/3649217.3653612

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with Al: Leveraging Generative Artificial
Intelligence in Computer Science Education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 2 (Portland, OR, USA)
(SIGCSE 2024). Association for Computing Machinery, New York, NY, USA, 1927.
https://doi.org/10.1145/3626253.3635427

Rongxin Liu, Julianna Zhao, Benjamin Xu, Christopher Perez, Yuliia Zhukovets,
and David J. Malan. 2025. Improving Al in CS50: Leveraging Human Feedback for
Better Learning. In Proceedings of the 56th ACM Technical Symposium on Computer
Science Education V. 1 (Pittsburgh, PA, USA) (SIGCSETS 2025). Association for
Computing Machinery, New York, NY, USA, 715-721. https://doi.org/10.1145/
3641554.3701945

Dominic Lohr, Hieke Keuning, and Natalie Kiesler. 2025. You're (Not) My
Type—Can LLMs Generate Feedback of Specific Types for Introductory Pro-
gramming Tasks? Journal of Computer Assisted Learning 41, 1 (2025), 2025.
https://doi.org/10.1111/jcal. 13107

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots, John
Mitchell, Noah Goodman, and Chris Piech. 2021. Generative Grading: Near
Human-level Accuracy for Automated Feedback on Richly Structured Problems.
In Proceedings of the 14th Educational Data Mining conference.

Burt L. Monroe, Michael P. Colaresi, and Kevin M. Quinn. 2017. Fightin’ Words:
Lexical Feature Selection and Evaluation for Identifying the Content of Political
Conflict. Political Analysis 16, 4 (2017), 372-403. https://doi.org/10.1093/pan/
mpn018

Tung Phung, Victor-Alexandru Padurean, Anjali Singh, Christopher Brooks, José
Cambronero, Sumit Gulwani, Adish Singla, and Gustavo Soares. 2024. Automating
Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for
Hint Generation and GPT-3.5 Student Model for Hint Validation. In Proceedings
of the 14th Learning Analytics and Knowledge Conference (Kyoto, Japan) (LAK
°24). Association for Computing Machinery, New York, NY, USA, 12-23. https:
//doi.org/10.1145/3636555.3636846

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct Preference Optimization: Your Language
Model is Secretly a Reward Model. In Advances in Neural Information Processing
Systems, Vol. 36. Curran Associates, Inc., 53728-53741.

Alexander Scarlatos, Digory Smith, Simon Woodhead, and Andrew Lan. 2024.
Improving the Validity of Automatically Generated Feedback via Reinforcement
Learning. Springer Nature Switzerland, 280-294. https://doi.org/10.1007/978-3-
031-64302-6_20

Valerie J. Shute. 2008. Focus on Formative Feedback. Review of Educational
Research 78, 1 (2008), 153-189. https://doi.org/10.3102/0034654307313795
Annapurna Vadaparty, Daniel Zingaro, David H. Smith IV, Mounika Padala,
Christine Alvarado, Jamie Gorson Benario, and Leo Porter. 2024. CS1-LLM:
Integrating LLMs into CS1 Instruction. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024).
Association for Computing Machinery, New York, NY, USA, 297-303. https:
//doi.org/10.1145/3649217.3653584

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influ-
ence on success. In Proceedings of the tenth annual conference on International
computing education research. 19-26.

Sierra Wang, John Mitchell, and Chris Piech. 2024. A Large Scale RCT on Effective
Error Messages in CS1. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association
for Computing Machinery, New York, NY, USA, 1395-1401. https://doi.org/10.
1145/3626252.3630764

Juliette Woodrow, Sanmi Koyejo, and Chris Piech. 2025. Improving Generative
Al Student Feedback: Direct Preference Optimization with Teachers in the Loop.
https://juliettewoodrow.github.io/paper-hosting/dpo_feedback.pdf.

Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. 2021. Proto-
Transformer: A Meta-Learning Approach to Providing Student Feedback.
arXiv:2107.14035 [cs.CY] https://arxiv.org/abs/2107.14035

Zezhu Yu, Suqing Liu, Paul Denny, Andreas Bergen, and Michael Liut. 2025.
Integrating Small Language Models with Retrieval-Augmented Generation in
Computing Education: Key Takeaways, Setup, and Practical Insights. In Proceed-
ings of the 56th ACM Technical Symposium on Computer Science Education V. 1
(Pittsburgh, PA, USA) (SIGCSETS 2025). Association for Computing Machinery,
New York, NY, USA, 1302-1308. https://doi.org/10.1145/3641554.3701844
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, et al. 2023. Judging LLM-as-a-judge with MT-bench
and Chatbot Arena. In Proceedings of the 37th International Conference on Neu-
ral Information Processing Systems (New Orleans, LA, USA) (NIPS ’23). Curran
Associates Inc., Red Hook, NY, USA, Article 2020, 29 pages.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, et al. 2023. LIMA:
Less Is More for Alignment. arXiv:2305.11206 [cs.CL]

https://doi.org/10.1145/3641554.3701972
https://doi.org/10.3102/00346543065003245
https://doi.org/10.1145/3712001
https://doi.org/10.1145/3624720
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3483843
https://doi.org/10.3102/003465430298487
https://doi.org/10.1145/3649165.3690101
https://doi.org/10.1145/3568813.3600139
https://arxiv.org/abs/2311.02775
https://doi.org/10.1145/3641554.3701791
https://doi.org/10.1145/3649217.3653612
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3641554.3701945
https://doi.org/10.1145/3641554.3701945
https://doi.org/10.1111/jcal.13107
https://doi.org/10.1093/pan/mpn018
https://doi.org/10.1093/pan/mpn018
https://doi.org/10.1145/3636555.3636846
https://doi.org/10.1145/3636555.3636846
https://doi.org/10.1007/978-3-031-64302-6_20
https://doi.org/10.1007/978-3-031-64302-6_20
https://doi.org/10.3102/0034654307313795
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/3626252.3630764
https://doi.org/10.1145/3626252.3630764
https://juliettewoodrow.github.io/paper-hosting/dpo_feedback.pdf
https://arxiv.org/abs/2107.14035
https://arxiv.org/abs/2107.14035
https://doi.org/10.1145/3641554.3701844
https://arxiv.org/abs/2305.11206

	Abstract
	1 Introduction
	2 Related Work
	3 Context
	4 Methodology
	4.1 Generating Feedback
	4.2 Fine-tuning Small Language Models: Distilling Knowledge From LLMs
	4.3 Experimental Setup

	5 Evaluation
	5.1 Feedback Quality Criteria
	5.2 Human Evaluation
	5.3 LLM Evaluation

	6 Results
	6.1 Human Evaluation: Absolute Quality
	6.2 Human Evaluation: Subjective Preferences
	6.3 LLM Evaluation
	6.4 Case Study: Student Perceptions

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

